9,114 research outputs found

    Exotic phase separation in one-dimensional hard-core boson system with two- and three-body interactions

    Full text link
    We investigate the ground state phase diagram of hard-core boson system with repulsive two-body and attractive three-body interactions in one-dimensional optic lattice. When these two interactions are comparable and increasing the hopping rate, physically intuitive analysis indicates that there exists an exotic phase separation regime between the solid phase with charge density wave order and superfluid phase. We identify these phases and phase transitions by numerically analyzing the density distribution, structure factor of density-density correlation function, three-body correlation function and von Neumann entropy estimator obtained by density matrix renormalization group method. These exotic phases and phase transitions are expected to be observed in the ultra-cold polar molecule experiments by properly tuning interaction parameters, which is constructive to understand the physics of ubiquitous insulating-superconducting phase transitions in condensed matter systems

    Controlling Entanglement Dynamics by Choosing Appropriate Ratio between Cavity-Fiber Coupling and Atom-Cavity Coupling

    Full text link
    The entanglement characteristics including the so-called sudden death effect between two identical two-level atoms trapped in two separate cavities connected by an optical fiber are studied. The results show that the time evolution of entanglement is sensitive not only to the degree of entanglement of the initial state but also to the ratio between cavity-fiber coupling () and atom-cavity coupling (). This means that the entanglement dynamics can be controlled by choosing specific v and g.Comment: 14pages, 3figures, conferenc
    corecore