25,886 research outputs found

    Derivation of Electroweak Chiral Lagrangian from One Family Technicolor Model

    Full text link
    Based on previous studies deriving the chiral Lagrangian for pseudo scalar mesons from the first principle of QCD in the path integral formalism, we derive the electroweak chiral Lagrangian and dynamically compute all its coefficients from the one family technicolor model. The numerical results of the p4p^4 order coefficients obtained in this paper are proportional to the technicolor number NTCN_{\rm TC} and the technifermion number NTFN_{\rm TF}, which agrees with the arguments in previous works, and which confirms the reliability of this dynamical computation.Comment: 6 page

    Quakes in Solid Quark Stars

    Full text link
    A starquake mechanism for pulsar glitches is developed in the solid quark star model. It is found that the general glitch natures (i.e., the glitch amplitudes and the time intervals) could be reproduced if solid quark matter, with high baryon density but low temperature, has properties of shear modulus \mu = 10^{30~34} erg/cm^3 and critical stress \sigma_c = 10^{18~24} erg/cm^3. The post-glitch behavior may represent a kind of damped oscillations.Comment: 11 pages, 4 figures (but Fig.3 is lost), a complete version can be obtained by http://vega.bac.pku.edu.cn/~rxxu/publications/index_P.htm, a new version to be published on Astroparticle Physic

    Fast Determination of Lycopene Content and Soluble Solid Content of Cherry Tomatoes Using Metal Oxide Sensors Based Electronic Nose

    Get PDF
    Lycopene content (LC) and soluble solid content (SSC) are important quality indicators for cherry tomatoes. This study attempted simultaneous analysis of inner quality of cherry tomato by Electronic nose (E-nose) using multivariate analysis. E-nose was used for data acquisition, the response signals were regressed by multiple linear regression (MLR) and partial least square regression (PLS) to build predictive models. The performances of the predictive models were tested according to root mean square and correlation coefficient (R2) in the training set and prediction set. The results showed that MLR models were superior to PLS model, with higher value of R2 and lower values of for RMSE firmness, pH, SSC, and LC. Together with MLR, E-nose could be used to obtain firmness, pH, soluble solid and lycopene contents in cherry tomatoes

    Modelling and control of the flame temperature distribution using probability density function shaping

    Get PDF
    This paper presents three control algorithms for the output probability density function (PDF) control of the 2D and 3D flame distribution systems. For the 2D flame distribution systems, control methods for both static and dynamic flame systems are presented, where at first the temperature distribution of the gas jet flames along the cross-section is approximated. Then the flame energy distribution (FED) is obtained as the output to be controlled by using a B-spline expansion technique. The general static output PDF control algorithm is used in the 2D static flame system, where the dynamic system consists of a static temperature model of gas jet flames and a second-order actuator. This leads to a second-order closed-loop system, where a singular state space model is used to describe the dynamics with the weights of the B-spline functions as the state variables. Finally, a predictive control algorithm is designed for such an output PDF system. For the 3D flame distribution systems, all the temperature values of the flames are firstly mapped into one temperature plane, and the shape of the temperature distribution on this plane can then be controlled by the 3D flame control method proposed in this paper. Three cases are studied for the proposed control methods and desired simulation results have been obtained

    Fully gapped superconducting state in Au2Pb: a natural candidate for topological superconductor

    Full text link
    We measured the ultra-low-temperature specific heat and thermal conductivity of Au2_2Pb single crystal, a possible three-dimensional Dirac semimetal with a superconducting transition temperature TcT_c \approx 1.05 K. The electronic specific heat can be fitted by a two-band s-wave model, which gives the gap amplitudes Δ1\Delta_1(0)/kBTck_BT_c = 1.38 and Δ2\Delta_2(0)/kBTck_BT_c = 5.25. From the thermal conductivity measurements, a negligible residual linear term κ0/T\kappa_0/T in zero field and a slow field dependence of κ0/T\kappa_0/T at low field are obtained. These results suggest that Au2_2Pb has a fully gapped superconducting state in the bulk, which is a necessary condition for topological superconductor if Au2_2Pb is indeed one.Comment: 6 pages, 4 figure
    corecore