2,162 research outputs found

    Coarsening model of cavity nucleation and thin film delamination from single-crystal BaTiO3 with proton implantation

    Get PDF
    The layer splitting mechanism of a proton implanted single crystal ferroelectric BaTiO3 thin film layer from its bulk BaTiO3 substrate has been investigated. The single crystal BaTiO3 thin film layer splits as the hydrogen gas diffuses and the internal cavity pressure increases. Ripening mechanism driven by the pressurized hydrogen in the implantation-induced damage zone makes coarsening of the cavities and causes the delamination of the thin layer during the annealing. A unique criterion relation of blister nucleation and evolution has been derived and a simplified debonding criterion is proposed in terms of dimensionless parameters based on the force equilibrium condition. A numerical simulation of two-bubble evolution and delamination of thin film is performed using a finite element method

    Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast

    Get PDF
    A combined multidimensional chromatography-mass spectrometry approach known as "MudPIT" enables rapid identification of proteins that interact with a tagged bait while bypassing some of the problems associated with analysis of polypeptides excised from SDS-polyacrylamide gels. However, the reproducibility, success rate, and applicability of MudPIT to the rapid characterization of dozens of proteins have not been reported. We show here that MudPIT reproducibly identified bona fide partners for budding yeast Gcn5p. Additionally, we successfully applied MudPIT to rapidly screen through a collection of tagged polypeptides to identify new protein interactions. Twenty-five proteins involved in transcription and progression through mitosis were modified with a new tandem affinity purification (TAP) tag. TAP-MudPIT analysis of 22 yeast strains that expressed these tagged proteins uncovered known or likely interacting partners for 21 of the baits, a figure that compares favorably with traditional approaches. The proteins identified here comprised 102 previously known and 279 potential physical interactions. Even for the intensively studied Swi2p/Snf2p, the catalytic subunit of the Swi/Snf chromatin remodeling complex, our analysis uncovered a new interacting protein, Rtt102p. Reciprocal tagging and TAP-MudPIT analysis of Rtt102p revealed subunits of both the Swi/Snf and RSC complexes, identifying Rtt102p as a common interactor with, and possible integral component of, these chromatin remodeling machines. Our experience indicates it is feasible for an investigator working with a single ion trap instrument in a conventional molecular/cellular biology laboratory to carry out proteomic characterization of a pathway, organelle, or process (i.e. "pathway proteomics") by systematic application of TAP-MudPIT

    Charting the protein complexome in yeast by mass spectrometry

    Get PDF
    It has become evident over the past few years that many complex cellular processes, including control of the cell cycle and ubiquitin-dependent proteolysis, are carried out by sophisticated multisubunit protein machines that are dynamic in abundance, post-translational modification state, and composition. To understand better the nature of the macromolecular assemblages that carry out the cell cycle and ubiquitin-dependent proteolysis, we have used mass spectrometry extensively over the past few years to characterize both the composition of various protein complexes and the modification states of their subunits. In this article we review some of our recent efforts, and describe a promising new approach for using mass spectrometry to dissect protein interaction networks

    Robust Co-catalytic Performance of Nanodiamonds Loaded on WO3 for the Decomposition of Volatile Organic Compounds under Visible Light

    Get PDF
    Proper co-catalysts (usually noble metals), combined with semiconductor materials, are commonly needed to maximize the efficiency of photocatalysis. Search for cost-effective and practical alternatives for noble-metal co-catalysts is under intense investigation. In this work, nanodiamond (ND), which is a carbon nanomaterial with a unique sp(3)(core)/sp(2)(shell) structure, was combined with WO3 (as an alternative co-catalyst for Pt) and applied for the degradation of volatile organic compounds under visible light. NDs-loaded WO3 showed a highly enhanced photocatalytic activity for the degradation of acetaldehyde (similar to 17 times higher than bare WO3), which is more efficient than other well-known co-catalysts (Ag, Pd, Au, and CuO) loaded onto WO3 and comparable to Pt-loaded WO3. Various surface modifications of ND and photoelectochemical measurements revealed that the graphitic carbon shell (sp(2)) on the diamond core (spa) plays a crucial role in charge separation and the subsequent interfacial charge transfer. As a result, ND/WO3 showed much higher production of OH radicals than bare WO3 under visible light. Since ND has a highly transparent characteristic, the light shielding that is often problematic with other carbon-based co-catalysts was considerably lower with NDs-loaded WO3. As a result, the photocatalytic activity of NDs/WO3 was higher than that of WO3 loaded with other carbon-based co-catalysts (graphene oxide or reduced graphene oxide). A range of spectroscopic and photo(electro)chemical techniques were systematically employed to investigate the properties of NDs-loaded WO3. ND is proposed as a cost-effective and practical nanomaterial to replace expensive noble-metal co-catalysts.1124Ysciescopu

    Discovery of Stable and Selective Antibody Mimetics from Combinatorial Libraries of Polyvalent, Loop-Functionalized Peptoid Nanosheets.

    Get PDF
    The ability of antibodies to bind a wide variety of analytes with high specificity and high affinity makes them ideal candidates for therapeutic and diagnostic applications. However, the poor stability and high production cost of antibodies have prompted exploration of a variety of synthetic materials capable of specific molecular recognition. Unfortunately, it remains a fundamental challenge to create a chemically diverse population of protein-like, folded synthetic nanostructures with defined molecular conformations in water. Here we report the synthesis and screening of combinatorial libraries of sequence-defined peptoid polymers engineered to fold into ordered, supramolecular nanosheets displaying a high spatial density of diverse, conformationally constrained peptoid loops on their surface. These polyvalent, loop-functionalized nanosheets were screened using a homogeneous Fรถrster resonance energy transfer (FRET) assay for binding to a variety of protein targets. Peptoid sequences were identified that bound to the heptameric protein, anthrax protective antigen, with high avidity and selectivity. These nanosheets were shown to be resistant to proteolytic degradation, and the binding was shown to be dependent on the loop display density. This work demonstrates that key aspects of antibody structure and function-the creation of multivalent, combinatorial chemical diversity within a well-defined folded structure-can be realized with completely synthetic materials. This approach enables the rapid discovery of biomimetic affinity reagents that combine the durability of synthetic materials with the specificity of biomolecular materials

    Reversible cerebral vasoconstriction syndrome without typical thunderclap headache: highresolution magnetic resonance imaging features

    Get PDF
    Reversible cerebral vasoconstriction syndrome (RCVS) is characterized by sudden onset severe headache with or without focal neurologic deficits and is accompanied by segmental or multifocal intracranial arterial vasospasms that resolve within 3 months. The typical RCVS has thunderclap headache but patients with RCVS without this type of headache have been reported. Herein we introduce an unusual case of RCVS without thunderclap headache, together with typical high-resolution magnetic resonance imaging (HR-MRI) features of RCVS showing the possible mechanisms of this condition. The present case suggests that HR-MRI features like dynamic negative remodeling but no enhancement may be a suspicious sign for RCVS, especially in cases with atypical presentation. HR-MRI can be helpful in direct visualization of the vasoconstriction of RCVS and differential diagnosis of other diseases, possibly even without serial examinations. Further research should be performed to test the diagnostic accuracy of HR-MRI in patients with RCVS

    Mitigation of Aerosols Generated During Rhinologic Surgery: A Pandemic-Era Cadaveric Simulation

    Get PDF
    Objective: After significant restrictions initially due to the COVID-19 pandemic, otolaryngologists have begun resuming normal clinical practice. However, the risk of SARS-CoV2 transmission to health care workers through aerosolization and airborne transmission during rhinologic surgery remains incompletely characterized. The objective of this study was to quantify the number concentrations of aerosols generated during rhinologic surgery with and without interventions involving 3 passive suction devices. Study Design: Cadaver simulation. Setting: Dedicated surgical laboratory. Subjects and Methods: In a simulation of rhinologic procedures with and without different passive suction interventions, the concentrations of generated aerosols in the particle size range of 0.30 to 10.0 mm were quantified with an optical particle sizer. Results: Functional endoscopic sinus surgery with and without microdebrider, high-speed powered drilling, use of an ultrasonic aspirator, and electrocautery all produced statistically significant increases in concentrations of aerosols of various sizes (P \.05). Powered drilling, ultrasonic aspirator, and electrocautery generated the highest concentration of aerosols, predominantly submicroparticles \1 mm. All interventions with a suction device were effective in reducing aerosols, though the surgical smoke evacuation system was the most effective passive suction method in 2 of the 5 surgical conditions with statistical significance (P \.05). Conclusion. Significant aerosol concentrations were produced in the range of 0.30 to 10.0 mm during all rhinologic procedures in this cadaver simulation. Rhinologic surgery with a passive suction device results in significant mitigation of generated aerosols

    Avian WNT4 in the Female Reproductive Tracts: Potential Role of Oviduct Development and Ovarian Carcinogenesis

    Get PDF
    The wingless-type MMTV integration site family of proteins (WNTs) is highly conserved secreted lipid-modified signaling molecules that play a variety of pivotal roles in developmental events such as embryogenesis, tissue homeostasis and cell polarity. Although, of these proteins, WNT4 is known to be involved in genital development in fetuses of mammalian species, its role is unknown in avian species. Therefore, in this study, we investigated expression profiles, as well as hormonal and post-transcriptional regulation of WNT4 expression in the reproductive tract of female chickens. Results of this study demonstrated that WNT4 is most abundant in the stromal and luminal epithelial cells of the isthmus and shell gland of the oviduct, respectively. WNT4 is also most abundant in the glandular epithelium of the shell gland of the oviduct of laying hens at 3 h post-ovulation during the laying cycle. In addition, treatment of young chicks with diethylstilbestrol (DES, a synthetic estrogen agonist) stimulated WNT4 only in the glandular epithelial cells of the isthmus and shell gland of the oviduct. Moreover, results of our study demonstrated that miR-1786 influences WNT4 expression via specific binding sites in its 3'-UTR. On the other hand, our results also indicate that WNT4 is expressed predominantly in the glandular epithelium of cancerous ovaries, but not in normal ovaries of hens. Collectively, these results indicate cell-specific expression of WNT4 in the reproductive tract of chickens and that it likely has crucial roles in development and function of oviduct as well as initiation of ovarian carcinogenesis in laying hens
    • โ€ฆ
    corecore