499 research outputs found

    More on scattering of Chern-Simons vortices

    Full text link
    I derive a general formalism for finding kinetic terms of the effective Lagrangian for slowly moving Chern-Simons vortices. Deformations of fields linear in velocities are taken into account. From the equations they must satisfy I extract the kinetic term in the limit of coincident vortices. For vortices passing one over the other there is locally the right-angle scattering. The method is based on analysis of field equations instead of action functional so it may be useful also for nonvariational equations in nonrelativistic models of Condensed Matter Physics.Comment: discussion around Eq.(45) is generalised, one more condition for the local right-angle scattering is adde

    Tunnel splitting and quantum phase interference in biaxial ferrimagnetic particles at excited states

    Full text link
    The tunneling splitting in biaxial ferrimagnetic particles at excited states with an explicit calculation of the prefactor of exponent is obtained in terms of periodic instantons which are responsible for tunneling at excited states and is shown as a function of magnetic field applied along an arbitrary direction in the plane of hard and medium axes. Using complex time path-integral we demonstrate the oscillation of tunnel splitting with respect to the magnitude and the direction of the magnetic field due to the quantum phase interference of two tunneling paths of opposite windings . The oscillation is gradually smeared and in the end the tunnel splitting monotonously increases with the magnitude of the magnetic field when the direction of the magnetic field tends to the medium axis. The oscillation behavior is similar to the recent experimental observation with Fe8_8 molecular clusters. A candidate of possible experiments to observe the effect of quantum phase interference in the ferrimagnetic particles is proposed.Comment: 15 pages, 5 figures, acceptted to be pubblished in Physical Review

    First and Second Order Vortex Dynamics

    Get PDF
    The low energy dynamics of vortices in selfdual Abelian Higgs theory is of second order in vortex velocity and characterized by the moduli space metric. When Chern-Simons term with small coefficient is added to the theory, we show that a term linear in vortex velocity appears and can be consistently added to the second order expression. We provides an additional check of the first and second order terms by studying the angular momentum in the field theory. We briefly explore other first order term due to small background electric charge density and also the harmonic potential well for vortices given by the moment of inertia.Comment: a rev tex file, 22 pages, no figur

    Instantons and Yang-Mills Flows on Coset Spaces

    Full text link
    We consider the Yang-Mills flow equations on a reductive coset space G/H and the Yang-Mills equations on the manifold R x G/H. On nonsymmetric coset spaces G/H one can introduce geometric fluxes identified with the torsion of the spin connection. The condition of G-equivariance imposed on the gauge fields reduces the Yang-Mills equations to phi^4-kink equations on R. Depending on the boundary conditions and torsion, we obtain solutions to the Yang-Mills equations describing instantons, chains of instanton-anti-instanton pairs or modifications of gauge bundles. For Lorentzian signature on R x G/H, dyon-type configurations are constructed as well. We also present explicit solutions to the Yang-Mills flow equations and compare them with the Yang-Mills solutions on R x G/H.Comment: 1+12 page

    Gravitational Leptogenesis and Neutrino Mass Limit

    Full text link
    Recently Davoudiasl {\it et al} \cite{steinhardt} have introduced a new type of interaction between the Ricci scalar RR and the baryon current JμJ^{\mu}, μRJμ{\partial_\mu R} J^{\mu} and proposed a mechanism for baryogenesis, the gravitational baryogenesis. Generally, however, μR\partial_{\mu} R vanishes in the radiation dominated era. In this paper we consider a generalized form of their interaction, μf(R)Jμ\partial_{\mu}f(R)J^{\mu} and study again the possibility of gravitational baryo(lepto)genesis. Taking f(R)lnRf(R)\sim \ln R, we will show that μf(R)μR/R\partial_{\mu}f(R)\sim \partial_{\mu} R/R does not vanish and the required baryon number asymmetry can be {\it naturally} generated in the early universe.Comment: 4 page

    Chern-Simons Vortices in Supergravity

    Get PDF
    We study supersymmetric vortex solutions in three-dimensional abelian gauged supergravity. First, we construct the general U(1)-gauged D=3, N=2 supergravity whose scalar sector is an arbitrary Kahler manifold with U(1) isometry. This construction clarifies the connection between local supersymmetry and the specific forms of some scalar potentials previously found in the literature -- in particular, it provides the locally supersymmetric embedding of the abelian Chern-Simons Higgs model. We show that the Killing spinor equations admit rotationally symmetric vortex solutions with asymptotically conical geometry which preserve half of the supersymmetry.Comment: 26 pages, LaTeX2

    Correlated two-electron transport: a principle for a novel charge pump

    Get PDF
    By considering a correlated two-electron transport process (TET) and using a diagrammatic analysis within the Keldysh nonequilibrium Green's function formalism, we discuss a novel charge pump by which carriers are pumped from a contact with low chemical potential to another contact with a higher potential. The TET process involves two correlated incident electrons scattering and exchanging energy with each other. The process can significantly affect charge current density and it involves high empty states and/or low filled states of the Fermi liquid of the leads.Comment: 4 pages, 4 figures, revte

    Relativistic close coupling calculations for photoionization and recombination of Ne-like Fe XVII

    Get PDF
    Relativistic and channel coupling effects in photoionization and unified electronic recombination of Fe XVII are demonstrated with an extensive 60-level close coupling calculation using the Breit-Pauli R-matrix method. Photoionization and (e + ion) recombination calculations are carried out for the total and the level-specific cross sections, including the ground and several hundred excited bound levels of Fe XVII (up to fine structure levels with n = 10). The unified (e + ion) recombination calculations for (e + Fe XVIII --> Fe XVII) include both the non-resonant and resonant recombination (`radiative' and `dielectronic recombination' -- RR and DR). The low-energy and the high energy cross sections are compared from: (i) a 3-level calculation with 2s^2p^5 (^2P^o_{1/2,3/2}) and 2s2p^6 (^2S_{1/2}), and (ii) the first 60-level calculation with \Delta n > 0 coupled channels with spectroscopic 2s^2p^5, 2s2p^6, 2s^22p^4 3s, 3p, 3d, configurations, and a number of correlation configurations. Strong channel coupling effects are demonstrated throughout the energy ranges considered, in particular via giant photoexcitation-of-core (PEC) resonances due to L-M shell dipole transition arrays 2p^5 --> 2p^4 3s, 3d in Fe XIII that enhance effective cross sections by orders of magnitude. Comparison is made with previous theoretical and experimental works on photoionization and recombination that considered the relatively small low-energy region (i), and the weaker \Delta n = 0 couplings. While the 3-level results are inadequate, the present 60-level results should provide reasonably complete and accurate datasets for both photoionization and (e + ion) recombination of Fe~XVII in laboratory and astrophysical plasmas.Comment: 19 pages, 8 figures, Phys. Rev. A (submitted
    corecore