3 research outputs found

    Polydopamine-Based Simple and Versatile Surface Modification of Polymeric Nano Drug Carriers

    No full text
    The surface of a polymeric nanoparticle (NP) is often functionalized with cell-interactive ligands and/or additional polymeric layers to control NP interaction with cells and proteins. However, such modification is not always straightforward when the surface is not chemically reactive. For this reason, most NP functionalization processes employ reactive linkers or coupling agents or involve prefunctionalization of the polymer, which are complicated and inefficient. Moreover, prefunctionalized polymers can lose the ability to encapsulate and retain a drug if the added ligands change the chemical properties of the polymer. To overcome this challenge, we use dopamine polymerization as a way of functionalizing NP surfaces. This method includes brief incubation of the preformed NPs in a weak alkaline solution of dopamine, followed by secondary incubation with desired ligands. Using this method, we have functionalized poly(lactic-<i>co</i>-glycolic acid) (PLGA) NPs with three representative surface modifiers: a small molecule (folate), a peptide (Arg-Gly-Asp), and a polymer [poly(carboxybetaine methacrylate)]. We confirmed that the modified NPs showed the expected cellular interactions with no cytotoxicity or residual bioactivity of dopamine. The dopamine polymerization method is a simple and versatile surface modification method, applicable to a variety of NP drug carriers irrespective of their chemical reactivity and the types of ligands

    Intracellular NO-Releasing Hyaluronic Acid-Based Nanocarriers: A Potential Chemosensitizing Agent for Cancer Chemotherapy

    No full text
    In this work, we investigate whether <i>S</i>-nitrosoglutathione (GSNO)-conjugated hyaluronic acid-based self-assembled nanoparticles (GSNO-HANPs) can be useful as a chemosensitizing agent to improve the anticancer activity of doxorubicin (DOX). The GSNO-HANPs were prepared by aqueous assembly of GSNO-conjugated HA with grafted poly­(lactide-<i>co</i>-glycolide). Aqueous GSNO stability shielded within the assembled environments of the GSNO-HANPs was greatly enhanced, compared to that of free GSNO. The NO release from the GSNO-HANPs was facilitated in the presence of hyaluronidase-1 (Hyal-1) and ascorbic acid at intracellular concentrations. Microscopic analysis showed GSNO-HANPs effectively generated NO within the cells. We observed that NO made the human MCF-7 breast cancer cells vulnerable to DOX. This chemosensitizing activity was supported by the observation of an increased level of ONOO<sup>–</sup> (peroxynitrite), a highly reactive oxygen species, upon co-treatment with the GSNO-HANPs and DOX. Apoptosis assays showed that GSNO-HANP alone exhibited negligible cytotoxic effects and reinforced apoptotic activity of DOX. Animal experiments demonstrated the effective accumulation of GSNO-HANPs in solid MCF-7 tumors and effectively suppressed tumor growth in combination with DOX. This hyaluronic acid-based intracellularly NO-releasing nanoparticles may serve as a significant chemosensitizing agent in treatments of various cancers

    pH-Controlled Gas-Generating Mineralized Nanoparticles: A Theranostic Agent for Ultrasound Imaging and Therapy of Cancers

    No full text
    We report a theranostic nanoparticle that can express ultrasound (US) imaging and simultaneous therapeutic functions for cancer treatment. We developed doxorubicin-loaded calcium carbonate (CaCO<sub>3</sub>) hybrid nanoparticles (DOX-CaCO<sub>3</sub>-MNPs) through a block copolymer templated <i>in situ</i> mineralization approach. The nanoparticles exhibited strong echogenic signals at tumoral acid pH by producing carbon dioxide (CO<sub>2</sub>) bubbles and showed excellent echo persistence. <i>In vivo</i> results demonstrated that the DOX-CaCO<sub>3</sub>-MNPs generated CO<sub>2</sub> bubbles at tumor tissues sufficient for echogenic reflectivity under a US field. In contrast, the DOX-CaCO<sub>3</sub>-MNPs located in the liver or tumor-free subcutaneous area did not generate the CO<sub>2</sub> bubbles necessary for US contrast. The DOX-CaCO<sub>3</sub>-MNPs could also trigger the DOX release simultaneously with CO<sub>2</sub> bubble generation at the acidic tumoral environment. The DOX-CaCO<sub>3</sub>-MNPs displayed effective antitumor therapeutic activity in tumor-bearing mice. The concept described in this work may serve as a useful guide for development of various theranostic nanoparticles for US imaging and therapy of various cancers
    corecore