Abstract

We report a theranostic nanoparticle that can express ultrasound (US) imaging and simultaneous therapeutic functions for cancer treatment. We developed doxorubicin-loaded calcium carbonate (CaCO<sub>3</sub>) hybrid nanoparticles (DOX-CaCO<sub>3</sub>-MNPs) through a block copolymer templated <i>in situ</i> mineralization approach. The nanoparticles exhibited strong echogenic signals at tumoral acid pH by producing carbon dioxide (CO<sub>2</sub>) bubbles and showed excellent echo persistence. <i>In vivo</i> results demonstrated that the DOX-CaCO<sub>3</sub>-MNPs generated CO<sub>2</sub> bubbles at tumor tissues sufficient for echogenic reflectivity under a US field. In contrast, the DOX-CaCO<sub>3</sub>-MNPs located in the liver or tumor-free subcutaneous area did not generate the CO<sub>2</sub> bubbles necessary for US contrast. The DOX-CaCO<sub>3</sub>-MNPs could also trigger the DOX release simultaneously with CO<sub>2</sub> bubble generation at the acidic tumoral environment. The DOX-CaCO<sub>3</sub>-MNPs displayed effective antitumor therapeutic activity in tumor-bearing mice. The concept described in this work may serve as a useful guide for development of various theranostic nanoparticles for US imaging and therapy of various cancers

    Similar works

    Full text

    thumbnail-image

    Available Versions