57,947 research outputs found

    Global aspects of accelerating and rotating black hole space-times

    Full text link
    The complete family of exact solutions representing accelerating and rotating black holes with possible electromagnetic charges and a NUT parameter is known in terms of a modified Plebanski-Demianski metric. This demonstrates the singularity and horizon structure of the sources but not that the complete space-time describes two causally separated black holes. To demonstrate this property, the metric is first cast in the Weyl-Lewis-Papapetrou form. After extending this up to the acceleration horizon, it is then transformed to the boost-rotation-symmetric form in which the global properties of the solution are manifest. The physical interpretation of these solutions is thus clarified.Comment: 15 pages, 1 figure. To appear in Class. Quantum Gra

    Radiation generated by accelerating and rotating charged black holes in (anti-)de Sitter space

    Full text link
    Asymptotic behaviour of gravitational and electromagnetic fields of exact type D solutions from the large Plebanski-Demianski family of black hole spacetimes is analyzed. The amplitude and directional structure of radiation is evaluated in cases when the cosmological constant is non-vanishing, so that the conformal infinities have either de Sitter-like or anti-de Sitter-like character. In particular, explicit relations between the parameters that characterize the sources (that is their mass, electric and magnetic charges, NUT parameter, rotational parameter, and acceleration) and properties of the radiation generated by them are presented. The results further elucidate the physical interpretation of these solutions and may help to understand radiative characteristics of more general spacetimes than those that are asymptotically flat.Comment: 24 pages, 18 figures. To appear in Classical and Quantum Gravit

    Long-term temperature effects on GaAs solar cells

    Get PDF
    The thermal degradation of AlGaAs solar cells resulting from a long-term operation in a space environment is investigated. The solar cell degradation effects caused by zinc and aluminum diffusion as well as deterioration by arsenic evaporation are presented. Also, the results are presented of experimental testing and measurements of various GaAs solar cell properties while the solar cell was operating in the temperature range of 27 C to 350 C. In particular, the properties of light current voltage curves, dark current voltage curves, and spectral response characteristics are given. Finally, some theoretical models for the annealing of radiation damage over various times and temperatures are included

    \u3cem\u3eRhizobium leguminosarum\u3c/em\u3e CFN42 Lipopolysaccharide Antigenic Changes Induced by Environmental Conditions

    Get PDF
    Four monoclonal antibodies were raised against the lipopolysaccharide of Rhizobium leguminosarum bv. phaseoli CFN42 grown in tryptone and yeast extract. Two of these antibodies reacted relatively weakly with the lipopolysaccharide of bacteroids of this strain isolated from bean nodules. Growth ex planta of strain CFN42 at low pH, high temperature, low phosphate, or low oxygen concentration also eliminated binding of one or both of these antibodies. Lipopolysaccharide mobility on gel electrophoresis and reaction with other monoclonal antibodies and polyclonal antiserum indicated that the antigenic changes detected by these two antibodies did not represent major changes in lipopolysaccharide structure. The antigenic changes at low pH were dependent on growth of the bacteria but were independent of nitrogen and carbon sources and the rich or minimal quality of the medium. The Sym plasmid of this strain was not required for the changes induced ex planta. Analysis of bacterial mutants inferred to have truncated O-polysaccharides indicated that part, but not all, of the lipopolysaccharide O-polysaccharide portion was required for binding of these two antibodies. In addition, this analysis suggested that O-polysaccharide structures more distal to lipid A than the epitopes themselves were required for the modifications at low pH that prevented antibody binding. Two mutants were antigenically abnormal, even though they had abundant lipopolysaccharides of apparently normal size. One of these two mutants was constitutively unreactive toward three of the antibodies but indistinguishable from the wild type in symbiotic behavior. The other, whose bacteroids retained an epitope normally greatly diminished in bacteroids, was somewhat impaired in nodulation frequency and nodule development

    Analysis on the evolution and governance of the biotechnology industry of China

    Get PDF
    The past twenty years have witnessed the high-speed growth of China’s biotechnology industry, and this presents an excellent opportunity to examine the changes that have taken place, especially, to carry out overall evaluation and governance analysis from the perspective of technology policies. Although China’s biotechnology industry has achieved tremendous extension both in scale and structure, the strengths it gained from basic research have been significantly weakened by commercialization. This has resulted in the comparatively limited scale of the whole industry, innovation-lacking products, poor output from research and development and scarcity of industrial resources. A large range of literature regarding China’s biotechnology industry attributes these outcomes to vague and even inappropriate governance, findings supported mainly by analyses based on the linear model of impact of government policies on industrial development. In these analyses, government, enterprises and companies as well as R&D organizations are either put on the opposite poles or in a straight line. After examining the nature of China’s biotechnology industry, and in particular the dynamic procedures in research and development, the authors of this paper argue that besides government, enterprises and R&D organizations, a diverse array of factors should be taken into account as we tackle issues emerging in understanding the development of China’s biotechnology industry. Furthermore, these factors, human or nonhuman, should not be arranged as opposing poles or linearly connected points on a straight line. They are in fact all knitted in networks and act as both knitters and knots. China’s biotechnology industry gains its strength to develop and evolve from these networks, thus its governance must be aimed at improving their stability and quality. Although the main disciplinary perspectives of this research are historical and sociological (including identification of the three development stages of biotechnology in China since 1978 to present days), a large number of concepts and ideas from management studies as well as an interdisciplinary approach are also incorporated into the analysis. The main model used in this research is Actor Network Theory, which is employed as a basic theoretical frame. From this starting point the authors attempt to make a closer examination of China’s biotechnology industry both at the level of technology research and development and at the level of commercialization. The modeling process in this research can be regarded as an attempt to explore the social construction of China’s biotechnology industry. The paper reveals how China’s biotechnology industry develops in the form of networks within the country’s social context and what kinds of relationships exist among the relevant factors; therefore, providing guiding insights for improving the governance of China’s biotechnology industry both in policy and management

    Spectral Representation Theory for Dielectric Behavior of Nonspherical Cell Suspensions

    Full text link
    Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, while the high-frequency one was independent of it. The cell shape effect was simulated by an ellipsoidal cell model but the comparison between theory and experiment was far from being satisfactory. Prompted by the discrepancy, we proposed the use of spectral representation to analyze more realistic cell models. We adopted a shell-spheroidal model to analyze the effects of the cell membrane. It is found that the dielectric property of the cell membrane has only a minor effect on the dispersion magnitude ratio and the characteristic frequency ratio. We further included the effect of rotation of dipole induced by an external electric field, and solved the dipole-rotation spheroidal model in the spectral representation. Good agreement between theory and experiment has been obtained.Comment: 19 pages, 5 eps figure

    Detection of genuinely entangled and non-separable nn-partite quantum states

    Full text link
    We investigate the detection of entanglement in nn-partite quantum states. We obtain practical separability criteria to identify genuinely entangled and non-separable mixed quantum states. No numerical optimization or eigenvalue evaluation is needed, and our criteria can be evaluated by simple computations involving components of the density matrix. We provide examples in which our criteria perform better than all known separability criteria. Specifically, we are able to detect genuine nn-partite entanglement which has previously not been identified. In addition, our criteria can be used in today's experiment.Comment: 8 pages, one figur
    corecore