78,318 research outputs found
Majorana Edge States in Interacting Two-chain Ladders of Fermions
In this work we study interacting spinless fermions on a two-chain ladder
with inter-chain pair tunneling while single-particle tunneling is suppressed
at low energy. The model embodies a symmetry associated with the
fermion parity on each chain. We find that when the system is driven to the
strong-coupling phase by the pair tunneling, Majorana excitations appear on the
boundary. Such Majorana edge states correspond to two-fold degeneracy of ground
states distinguished by different fermion parity on each chain, thus
representing a generalization of one-dimensional topological superconductors.
We also characterize the stability of the ground state degeneracy against local
perturbations. Lattice fermion models realizing such effective field theory are
discussed.Comment: 6 pages, 1 figur
Non-magnetic Stern-Gerlach Experiment from Electron Diffraction
Using the wave nature of the electrons, we demonstrate that a transverse spin
current can be generated simply by the diffraction through a single slit in the
spin-orbital coupling system of the two-dimensional electron gas. The
diffracted electron picks up the transverse momentum. The up spin electron goes
one way and the down spin electron goes the other, producing the coherent spin
current. In the system of spin-orbital coupling eVm, the
\emph{out-of-plane} component of the spin of the electron can be generated up
to 0.42 . Based on this effect, a novel device of grating to distill
spin is designed. Two first diffraction peaks of electron carry different
spins, duplicating the non-magnetic version of Stern-Gerlach experiment. The
direction of the spin current can be controlled by the gate voltage with low
energy cost.Comment: 4 pages, 4 figure
Stable Large-Scale Perturbations in Interacting Dark-Energy Model
It is found that the evolutions of density perturbations on the super-Hubble
scales are unstable in the model with dark-sector interaction proportional
to the energy density of cold dark matter (CDM) and constant equation
of state parameter of dark energy . In this paper, to avoid the
instabilities, we suggest a new covariant model for the energy-momentum
transfer between DE and CDM. Then we show that the the large-scale
instabilities of curvature perturbations can be avoided in our model in the
universe filled only by DE and CDM. Furthermore, by including the additional
components of radiation and baryons, we calculate the dominant non-adiabatic
modes in the radiation era and find that the modes grow in the power law with
exponent at the order of unit.Comment: 14 pages, 2 figures. arXiv admin note: substantial text overlap with
arXiv:1110.180
- …
