2,207 research outputs found

    The informativeness of the technical conversion factor for the price ratio of processing livestock

    Get PDF
    The technical conversion factor (TCF) is a survey-based estimate of the percentage of carcass weight obtained per unit of live weight. Practitioners and researchers have used it to predict the corresponding price ratio (PR). We use both in-sample regressions and out-of-sample forecasting analysis to test the validity of this approach in case of predicting the price effects of processing livestock in Europe. By regressing the PR on the inverse value of the corresponding TCF for a large panel of European countries and animal types, we find a significant positive relation between these variables, which also has economic value in terms of improving out-of-sample forecasting precision. This result is shown to be robust to animal type, year, and country fixed effects. The TCF therefore has predictive value about the corresponding PR.(3

    On the expected number of equilibria in a multi-player multi-strategy evolutionary game

    Full text link
    In this paper, we analyze the mean number E(n,d)E(n,d) of internal equilibria in a general dd-player nn-strategy evolutionary game where the agents' payoffs are normally distributed. First, we give a computationally implementable formula for the general case. Next we characterize the asymptotic behavior of E(2,d)E(2,d), estimating its lower and upper bounds as dd increases. Two important consequences are obtained from this analysis. On the one hand, we show that in both cases the probability of seeing the maximal possible number of equilibria tends to zero when dd or nn respectively goes to infinity. On the other hand, we demonstrate that the expected number of stable equilibria is bounded within a certain interval. Finally, for larger nn and dd, numerical results are provided and discussed.Comment: 26 pages, 1 figure, 1 table. revised versio

    Was the Higgs boson discovered?

    Get PDF
    The standard model has postulated the existence of a scalar boson, named the Higgs boson. This boson plays a central role in a symmetry breaking scheme called the Brout-Englert-Higgs mechanism (or the Brout-Englert-Higgs-Guralnik-Hagen-Kibble mechanism, for completeness) making the standard model realistic. However, until recently at least, the 50-year-long-sought Higgs boson had remained the only particle in the standard model not yet discovered experimentally. It is the last but very important missing ingredient of the standard model. Therefore, searching for the Higgs boson is a crucial task and an important mission of particle physics. For this purpose, many theoretical works have been done and different experiments have been organized. It may be said in particular that to search for the Higgs boson has been one of the ultimate goals of building and running the LHC, the world's largest and most powerful particle accelerator, at CERN, which is a great combination of science and technology. Recently, in the summer of 2012, ATLAS and CMS, the two biggest and general-purpose LHC collaborations, announced the discovery of a new boson with a mass around 125 GeV. Since then, for over two years, ATLAS, CMS and other collaborations have carried out intensive investigations on the newly discovered boson to confirm that this new boson is really the Higgs boson (of the standard model). It is a triumph of science and technology and international cooperation. Here, we will review the main results of these investigations following a brief introduction to the Higgs boson within the theoretical framework of the standard model and Brout-Englert-Higgs mechanism as well as a theoretical and experimental background of its search. This paper may attract interest of not only particle physicists but also a broader audience.Comment: LateX, 23 pages, 01 table, 9 figures. To appear in Commun. Phys. Version 2: Minor changes, two references adde
    • …
    corecore