82,141 research outputs found
Quality assessment technique for ubiquitous software and middleware
The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future
Anomalous Viscosity of the Quark-Gluon Plasma
The shear viscosity of the quark-gluon plasma is predicted to be lower than
the collisional viscosity for weak coupling. The estimated ratio of the shear
viscosity to entropy density is rather close to the ratio calculated by N = 4
super Yang-Mills theory for strong coupling, which indicates that the
quark-gluon plasma might be strongly coupled. However, in presence of momentum
anisotropy, the Weibel instability can arise and drive the turbulent transport.
Shear viscosity can be lowered by enhanced collisionality due to turbulence,
but the decorrelation time and its relation to underlying dynamics and
color-magnetic fields have not been calculated self-consistently. In this
paper, we use resonance broadening theory for strong turbulence to calculate
the anomalous viscosity of the quark-gluon plasma for nonequilibrium. For
saturated Weibel instability, we estimate the scalings of the decorrelation
rate and viscosity and compare these with collisional transport. This
calculation yields an explicit connection between the underlying momentum space
anisotropy and the viscosity anomaly.Comment: 16 pages, 2 figure
Quantitative Description of by the Hubbard Model in Infinite Dimensions
We show that the analytic single-particle density of states and the optical
conductivity for the half-filled Hubbard model on the Bethe lattice in infinite
dimensions describe quantitatively the behavior of the gap and the kinetic
energy ratio of the correlated insulator . The form of the optical
conductivity shows rising and is quite similar to the
experimental data, and the density of states shows behavior near
the band edges.Comment: 9 pages, revtex, 4 figures upon reques
Spontaneous phase oscillation induced by inertia and time delay
We consider a system of coupled oscillators with finite inertia and
time-delayed interaction, and investigate the interplay between inertia and
delay both analytically and numerically. The phase velocity of the system is
examined; revealed in numerical simulations is emergence of spontaneous phase
oscillation without external driving, which turns out to be in good agreement
with analytical results derived in the strong-coupling limit. Such
self-oscillation is found to suppress synchronization and its frequency is
observed to decrease with inertia and delay. We obtain the phase diagram, which
displays oscillatory and stationary phases in the appropriate regions of the
parameters.Comment: 5 pages, 6 figures, to pe published in PR
Long-term temperature effects on GaAs solar cells
The thermal degradation of AlGaAs solar cells resulting from a long-term operation in a space environment is investigated. The solar cell degradation effects caused by zinc and aluminum diffusion as well as deterioration by arsenic evaporation are presented. Also, the results are presented of experimental testing and measurements of various GaAs solar cell properties while the solar cell was operating in the temperature range of 27 C to 350 C. In particular, the properties of light current voltage curves, dark current voltage curves, and spectral response characteristics are given. Finally, some theoretical models for the annealing of radiation damage over various times and temperatures are included
- …