38 research outputs found

    Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method

    No full text
    Human immunodeficiency virus type-1 and hepatitis C virus (HIV/HCV) coinfection occurs when a patient is simultaneously infected with both human immunodeficiency virus type-1 (HIV-1) and hepatitis C virus (HCV), which is common today in certain populations. However, the treatment of coinfection is a challenge because of the special considerations needed to ensure hepatic safety and avoid drug–drug interactions. Multitarget inhibitors with less toxicity may provide a promising therapeutic strategy for HIV/HCV coinfection. However, the identification of one molecule that acts on multiple targets simultaneously by experimental evaluation is costly and time-consuming. In silico target prediction tools provide more opportunities for the development of multitarget inhibitors. In this study, by combining Naïve Bayes (NB) and support vector machine (SVM) algorithms with two types of molecular fingerprints, MACCS and extended connectivity fingerprints 6 (ECFP6), 60 classification models were constructed to predict compounds that were active against 11 HIV-1 targets and four HCV targets based on a multiple quantitative structure–activity relationships (multiple QSAR) method. Five-fold cross-validation and test set validation were performed to measure the performance of the 60 classification models. Our results show that the 60 multiple QSAR models appeared to have high classification accuracy in terms of the area under the ROC curve (AUC) values, which ranged from 0.83 to 1 with a mean value of 0.97 for the HIV-1 models and from 0.84 to 1 with a mean value of 0.96 for the HCV models. Furthermore, the 60 models were used to comprehensively predict the potential targets of an additional 46 compounds, including 27 approved HIV-1 drugs, 10 approved HCV drugs and nine selected compounds known to be active against one or more targets of HIV-1 or HCV. Finally, 20 hits, including seven approved HIV-1 drugs, four approved HCV drugs, and nine other compounds, were predicted to be HIV/HCV coinfection multitarget inhibitors. The reported bioactivity data confirmed that seven out of nine compounds actually interacted with HIV-1 and HCV targets simultaneously with diverse binding affinities. The remaining predicted hits and chemical-protein interaction pairs with the potential ability to suppress HIV/HCV coinfection are worthy of further experimental investigation. This investigation shows that the multiple QSAR method is useful in predicting chemical-protein interactions for the discovery of multitarget inhibitors and provides a unique strategy for the treatment of HIV/HCV coinfection

    Multimerization Increases Tumor Enrichment of Peptide–Photosensitizer Conjugates

    No full text
    Photodynamic therapy (PDT) is an established therapeutic modality for the management of cancers. Conjugation with tumor-specific small molecule ligands (e.g., short peptides or peptidomimetics) could increase the tumor targeting of PDT agents, which is very important for improving the outcome of PDT. However, compared with antibody molecules, small molecule ligands have a much weaker affinity to their receptors, which means that their tumor enrichment is not always ideal. In this work, we synthesized multimeric RGD ligand-coupled conjugates of pyropheophorbide-a (Pyro) to increase the affinity through multivalent and cluster effects to improve the tumor enrichment of the conjugates. Thus, the dimeric and trimeric RGD peptide-coupled Pyro conjugates and the monomeric one for comparison were efficiently synthesized via a convergent strategy. A short polyethylene glycol spacer was introduced between two RGD motifs to increase the distance required for multivalence. A subsequent binding affinity assay verified the improvement of the binding towards integrin αvβ3 receptors after the increase in the valence, with an approximately 20-fold improvement in the binding affinity of the trimeric conjugate compared with that of the monomeric conjugate. In vivo experiments performed in tumor-bearing mice also confirmed a significant increase in the distribution of the conjugates in the tumor site via multimerization, in which the trimeric conjugate had the best tumor enrichment compared with the other two conjugates. These results indicated that the multivalence interaction can obviously increase the tumor enrichment of RGD peptide-conjugated Pyro photosensitizers, and the prepared trimeric conjugate can be used as a novel antitumor photodynamic agent with high tumor enrichment

    Magnetic Separation-Assistant Fluorescence Resonance Energy Transfer Inhibition for Highly Sensitive Probing of Nucleolin

    No full text
    For the widely used “off-on” fluorescence (or phosphorescence) resonance energy transfer (FRET or PRET) system, the separation of donors and acceptors species was vital for enhancing the sensitivity. To date, separation of free donors from FRET/PRET inhibition systems was somewhat not convenient, whereas separation of the target-induced far-between acceptors has hardly been reported yet. We presented here a novel magnetic separation-assistant fluorescence resonance energy transfer (MS-FRET) inhibition strategy for highly sensitive detection of nucleolin using Cy5.5-AS1411 as the donor and Fe<sub>3</sub>O<sub>4</sub>-polypyrrole core–shell (Fe<sub>3</sub>O<sub>4</sub>@PPY) nanoparticles as the NIR quenching acceptor. Due to hydrophobic interaction and π–π stacking of AS1411 and PPY, Cy5.5-AS1411 was bound onto the surface of Fe<sub>3</sub>O<sub>4</sub>@PPY, resulting in 90% of fluorescence quenching of Cy5.5-AS1411. Owing to the much stronger specific interaction of AS1411 and nucleolin, the presence of nucleolin could take Cy5.5-AS1411 apart from Fe<sub>3</sub>O<sub>4</sub>@PPY and restore the fluorescence of Cy5.5-AS1411. The superparamagnetism of Fe<sub>3</sub>O<sub>4</sub>@PPY enabled all separations and fluorescence measurements complete in the same quartz cell, and thus allowed the convenient but accurate comparison of the sensitivity and fluorescence recovery in the cases of separation or nonseparation. Compared to nonseparation FRET inhibition, the separation of free Cy5.5-AS1411 from Cy5.5-AS1411-Fe<sub>3</sub>O<sub>4</sub>@PPY solution (the first magnetic separation, MS-1) had as high as 25-fold enhancement of the sensitivity, whereas further separation of the nucleolin-inducing far-between Fe<sub>3</sub>O<sub>4</sub>@PPY from the FRET inhibition solution (the second magnetic separation, MS-2) could further enhance the sensitivity to 35-fold. Finally, the MS-FRET inhibition assay displayed the linear range of 0.625–27.5 μg L<sup>–1</sup> (8.1–359 pM) and detection limit of 0.04 μg L<sup>–1</sup> (0.05 pM) of nucleolin. The fluorescence intensity recovery (the percentage ratio of the final restoring fluorescence intensity to the quenched fluorescence intensity of Cy5.5-AS1411 solution by 0.09 g L<sup>–1</sup> Fe<sub>3</sub>O<sub>4</sub>@PPY) was enhanced from 36% (for nonseparation) to 56% (for two magnetic separations). This is the first accurate evaluation for the effect of separating donor/acceptor species on the FRET inhibition assay

    PEG Linker Improves Antitumor Efficacy and Safety of Affibody-Based Drug Conjugates

    No full text
    Antibody drug conjugates (ADCs) have become an important modality of clinical cancer treatment. However, traditional ADCs have some limitations, such as reduced permeability in solid tumors due to the high molecular weight of monoclonal antibodies, difficulty in preparation and heterogeneity of products due to the high drug/antibody ratio (4–8 small molecules per antibody). Miniaturized ADCs may be a potential solution, although their short circulation half-life may lead to new problems. In this study, we propose a novel design strategy for miniaturized ADCs in which drug molecules and small ligand proteins are site-specifically coupled via a bifunctional poly(ethylene glycol) (PEG) chain. The results showed that the inserted PEG chains significantly prolonged the circulation half-life but also obviously reduced the cytotoxicity of the conjugates. Compared with the conjugate ZHER2-SMCC-MMAE (HM), which has no PEG insertion, ZHER2-PEG4K-MMAE (HP4KM) and ZHER2-PEG10K-MMAE (HP10KM) with 4 or 10 kDa PEG insertions have 2.5- and 11.2-fold half-life extensions and 4.5- and 22-fold in vitro cytotoxicity reductions, respectively. The combined effect leads to HP10KM having the most ideal tumor therapeutic ability at the same dosages in the animal model, and its off-target toxicity was also reduced by more than 4 times compared with that of HM. These results may indicate that prolonging the half-life is very helpful in improving the therapeutic capacity of miniaturized ADCs. In the future, the design of better strategies that can prolong half-life without affecting cytotoxicity may be useful for further improving the therapeutic potential of these molecules
    corecore