18 research outputs found

    Magnetic and Transport Properties of Oxide Thin Films

    Get PDF
    My dissertation research focuses on the investigation of the transport and magnetic properties of transition metal and rare earth doped oxides, particularly SnO2 and HfO2 thin films. Cr- and Fe-doped SnO2 films were deposited on Al2O3 substrates by pulsed-laser deposition. Xray- diffraction patterns (XRD) show that the films have rutile structure and grow epitaxially along the (101) plane. The diffraction peaks of Cr-doped samples exhibit a systematic shift toward higher angles with increasing Cr concentration. This indicates that Cr dissolves in SnO2. On the other hand, there is no obvious shift of the diffraction peaks of the Fe-doped samples. The magnetization curves indicate that the Cr-doped SnO2 films are paramagnetic at 300 and 5 K. The Fe-doped SnO2 samples exhibit ferromagnetic behaviour at 300 and 5 K. Zero-field-cooled and field-cooled curves indicate super paramagnetic behavior above the blocking temperature of 100 K, suggesting that it is possible that there are ferromagnetic particles in the Fe-doped films. It was found that a Sn0.98Cr0.02O2 film became ferromagnetic at room temperature after annealing in H2. We have calculated the activation energy and found it decreasing with the annealing, which is explained by the increased oxygen vacancies/defects due to the H2 treatment of the films. The ferromagnetism may be associated with the presence of oxygen vacancies although AMR was not observed in the samples. Pure HfO2 and Gd-doped HfO2 thin films have been grown on different single crystal substrates by pulsed laser deposition. XRD patterns show that the pure HfO2 thin films are of single monoclinic phase. Gd-doped HfO2 films have the same XRD patterns except that their diffraction peaks have a shift toward lower angles, which indicates that Gd dissolves in HfO2. Transmission electron microscopy images show a columnar growth of the films. Very weak ferromagnetism is observed in pure and Gd-doped HfO2 films on different substrates at 300 and 5 K, which is attributed to either impure target materials or signals from the substrates. The magnetic properties do not change significantly with post deposition annealing of the HfO2 films

    Giant negative magnetoresistance of spin polarons in magnetic semiconductors–chromium-doped Ti2O3 thin films

    Get PDF
    Epitaxial Cr-doped Ti2O3 films show giant negative magnetoresistance up to –365% at 2 K. The resistivity of the doped samples follows the behavior expected of spin (magnetic) polarons at low temperature. Namely, rho= rho0 exp(T0/T)p, where p = 0.5 in zero field. A large applied field quenches the spin polarons and p is reduced to 0.25 expected for lattice polarons. The formation of spin polarons is an indication of strong exchange coupling between the magnetic ions and holes in the system

    The clinicopathological factors associated with disease progression in Luminal a breast cancer and characteristics of metastasis: A retrospective study from a single center in China

    Get PDF
    Background/Aim: This study investigated the clinicopathological factors associated with outcomes in patients with Luminal A breast cancer. Patients and Methods: Retrospective analysis of the association of clinicopathological factors and breast cancer outcome in 421 patients with newly diagnosed Luminal-A breast cancer that were enrolled from January 2008 to December 2014. Clinicopathological data were analyzed to validate the relationship with disease free survival (DFS) and overall survival (OS). Kaplan-Meier curves and log-rank tests were used to analyze the value of clinicopathological factors (tumor size, node status and lymphovascular invasion), and subsequent Cox regression analysis revealed significant prognostic factors. Results: With a median of 61 months follow up, the 5-year DFS and 5-year OS rate were 98.3% and 99.3%. Cox multivariate regression analysis showed that clinical anatomic stage, tumor size, status of lymph nodes, lymphovascular invasion and systemic treatment are strong prognostic factors for clinical outcome in patients with Luminal-A breast cancer. Of all 413 patients with stage I-III breast cancer, 14 presented with metastasis (3.4%) during the follow up. Bone (6/14, 42.9%) was the most common site of metastasis followed by liver (5/14, 35.7%) and lung (4/14, 28.6%). The median survival time after metastasis was 20.4 months. Of all the sites of distant metastasis, liver metastasis was the only factor that affected survival time after metastasis (χ2=6.263, p=0.012). Conclusion: Patients with Luminal A breast cancer have excellent outcomes. Liver metastasis is an important factor compressing the survival time after distant metastasis presents

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naĂŻve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Magnetic and Transport Properties of Oxide Thin Films

    No full text
    My dissertation research focuses on the investigation of the transport and magnetic properties of transition metal and rare earth doped oxides, particularly SnO2 and HfO2 thin films. Cr- and Fe-doped SnO2 films were deposited on Al2O3 substrates by pulsed-laser deposition. Xray- diffraction patterns (XRD) show that the films have rutile structure and grow epitaxially along the (101) plane. The diffraction peaks of Cr-doped samples exhibit a systematic shift toward higher angles with increasing Cr concentration. This indicates that Cr dissolves in SnO2. On the other hand, there is no obvious shift of the diffraction peaks of the Fe-doped samples. The magnetization curves indicate that the Cr-doped SnO2 films are paramagnetic at 300 and 5 K. The Fe-doped SnO2 samples exhibit ferromagnetic behaviour at 300 and 5 K. Zero-field-cooled and field-cooled curves indicate super paramagnetic behavior above the blocking temperature of 100 K, suggesting that it is possible that there are ferromagnetic particles in the Fe-doped films. It was found that a Sn0.98Cr0.02O2 film became ferromagnetic at room temperature after annealing in H2. We have calculated the activation energy and found it decreasing with the annealing, which is explained by the increased oxygen vacancies/defects due to the H2 treatment of the films. The ferromagnetism may be associated with the presence of oxygen vacancies although AMR was not observed in the samples. Pure HfO2 and Gd-doped HfO2 thin films have been grown on different single crystal substrates by pulsed laser deposition. XRD patterns show that the pure HfO2 thin films are of single monoclinic phase. Gd-doped HfO2 films have the same XRD patterns except that their diffraction peaks have a shift toward lower angles, which indicates that Gd dissolves in HfO2. Transmission electron microscopy images show a columnar growth of the films. Very weak ferromagnetism is observed in pure and Gd-doped HfO2 films on different substrates at 300 and 5 K, which is attributed to either impure target materials or signals from the substrates. The magnetic properties do not change significantly with post deposition annealing of the HfO2 films

    Prevalence of risk factors associated with rupture of abdominal aortic aneurysm (AAA): a single center retrospective study

    No full text
    Background Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease. The mortality rate for an AAA rupture is very high. Understanding the risk factors for AAA rupture would help AAA management, but little is known about these risk factors in the Chinese population. Methods This retrospective study included patients that were diagnosed with AAA during the last 5 years in a large national hospital in southern China. AAA patients were divided into a rupture and non-rupture group. Clinical data were extracted from the hospital medical record system. Clinical features were compared between the rupture and non-rupture groups. The associations between potential risk factors and rupture risk were evaluated using a multivariate logistic regression analysis. Results A total of 337 AAA patients were included for analysis in the present study. AAA diameter was significantly larger, and high-sensitivity C-reactive protein (hs-CRP) and serum creatinine levels were both significantly higher in AAA rupture patients. High-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels were significantly lower in AAA rupture patients. After adjustment, the multivariate logistic analysis found that AAA diameter and hs-CRP were independently positively associated with AAA rupture, and HDL-C level was adversely associated with AAA rupture. Conclusions Our data suggests that larger AAA diameter and higher hs-CRP level are associated with a higher risk of AAA rupture, and higher HDL-C level is associated with a lower risk of AAA rupture. The results of this study may be helpful for the management of AAA patients in southern China

    Androgen Receptor: A New Marker to Predict Pathological Complete Response in HER2-Positive Breast Cancer Patients Treated with Trastuzumab Plus Pertuzumab Neoadjuvant Therapy

    No full text
    (1) Background: Neoadjuvant therapy is the main therapeutic strategy for human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients, and the combination of trastuzumab and pertuzumab (HP) has become a routine treatment. How to predict and screen patients who are less likely to respond to neoadjuvant therapy is the focus of research. The androgen receptor (AR) is a biomarker that is widely expressed in all breast cancer subtypes and is probably related to treatment response and prognosis. In this study, we investigated the relationship between AR expression and treatment response in HER2-positive breast cancer patients treated with HP neoadjuvant therapy. (2) Methods: We evaluated early breast cancer patients treated with HP neoadjuvant therapy from Jan. 2019 to Oct. 2020 at Peking University First Hospital Breast Cancer Center. The inclusion criteria were as follows: early HER2-positive breast cancer patients diagnosed by core needle biopsy who underwent both HP neoadjuvant therapy and surgery. We compared the clinical and pathological features between pathological complete response (pCR) and non-pCR patients. (3) Results: We included 44 patients. A total of 90.9% of patients received neoadjuvant therapy of taxanes, carboplatin, trastuzumab and pertuzumab (TCHP), and the total pCR rate was 50%. pCR was negatively related to estrogen receptor (ER) positivity (OR 0.075 [95% confidence interval (CI) 0.008–0.678], p = 0.021) and positively related to high expression levels of AR (OR 33.145 [95% CI 2.803–391.900], p = 0.005). We drew a receiver operating characteristic (ROC) curve to assess the predictive value of AR expression for pCR, and the area under the curve was 0.737 (95% CI 0.585–0.889, p = 0.007). The optimal cutoff of AR for predicting pCR was 85%. (4) Conclusion: AR is a potential marker for the prediction of pCR in HER2-positive breast cancer patients treated with HP neoadjuvant therapy
    corecore