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ABSTRACT 

 

My dissertation research focuses on the investigation of the transport and magnetic 

properties of transition metal and rare earth doped oxides, particularly SnO2 and HfO2 thin films.  

Cr- and Fe-doped SnO2 films were deposited on Al2O3 substrates by pulsed-laser deposition.  X-

ray-diffraction patterns (XRD) show that the films have rutile structure and grow epitaxially 

along the (101) plane.  The diffraction peaks of Cr-doped samples exhibit a systematic shift 

toward higher angles with increasing Cr concentration.  This indicates that Cr dissolves in SnO2. 

On the other hand, there is no obvious shift of the diffraction peaks of the Fe-doped samples. The 

magnetization curves indicate that the Cr-doped SnO2 films are paramagnetic at 300 and 5  K. 

The Fe-doped SnO2 samples exhibit ferromagnetic behaviour at 300 and 5 K. Zero-field-cooled 

and field-cooled curves indicate super paramagnetic behavior above the blocking temperature of 

100 K, suggesting that it is possible that there are ferromagnetic particles in the Fe-doped films. 

It was found that a Sn0.98Cr0.02O2 film became ferromagnetic at room temperature after 

annealing in H2.  We have calculated the activation energy and found it decreasing with the 

annealing, which is explained by the increased oxygen vacancies/defects due to the H2 treatment 

of the films.  The ferromagnetism may be associated with the presence of oxygen vacancies 

although AMR was not observed in the samples.   

Pure HfO2 and Gd-doped HfO2 thin films have been grown on different single crystal 

substrates by pulsed laser deposition.  XRD patterns show that the pure HfO2 thin films are of 

single monoclinic phase.  Gd-doped HfO2
 films have the same XRD patterns except that their 

diffraction peaks have a shift toward lower angles, which indicates that Gd dissolves in HfO2.  
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Transmission electron microscopy images show a columnar growth of the films.  Very weak 

ferromagnetism is observed in pure and Gd-doped HfO2 films on different substrates at 300 and 

5 K, which is attributed to either impure target materials or signals from the substrates. The 

magnetic properties do not change significantly with post deposition annealing of the HfO2 films. 

   

Keywords  

SnO2, HfO2, pulsed laser deposition, thin film, epitaxial growth, magnetic thin films, 

ferromagnetic materials, transport properties.  



 1

CHAPTER 1 

INTRODUCTION 

 

1.1 Spintronics 

 

Traditional silicon chips in computers and other electronic devices control the flow of 

electrical current by modifying the positive or negative charge of different parts of each tiny 

circuit.  Spintronics is "Spin-based electronics". The idea is to use the electron's spin, as well as 

its charge in the devices. Spins can exist in one of two states-- “up” or “down”, and this quality 

can be exploited to build smaller (potentially on atomic scale) binary devices that are non-

volatile, faster, and more robust and use less power than charge-current-based devices.  

Furthermore, because of its quantum nature, electron spin may exist not only in the “up” or 

“down” state but also in many intermediate states depending on the energy of the system.  All 

these qualities hold the potential for what is in effect highly parallel commutating, which is the 

basis for the quantum computers.1 

Spintronics is not science fiction; it is already used in modern computers.  The most 

successful spintronic device up-to-date is the GMR spin valve.  This device utilizes a layered 

structure of thin films of magnetic materials, which change its electrical resistance depending on 

applied magnetic field direction.  In a spin valve, as shown in Fig. 1.1, one of the ferromagnetic 

layers is "pinned"(top layer in Fig. 1.1), so its magnetization direction remains fixed, the other 

ferromagnetic layer is "free" to change depend on the applied magnetic field.  When the applied 

magnetic field aligns the magnetization vectors of the free layer and the pinned layer to the same 
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direction, the electrical resistance of the device reaches its lower level.  On the other hand, when 

the applied external field causes the free layer magnetization vector to rotate in a direction 

antiparallel to the pinned layer magnetization vector, the electrical resistance of the device reach 

its higher level due to spin dependent scattering. 

 

Fig. 1.1 Schematic diagram of spin valve. 

 

GMR stands for giant magnetoresistance,  it was independently discovered in 1988 in 

Fe/Cr/Fe trilayers by a research team led by Peter Grünberg of the Jülich Research Centre, who 

owns the patent2, and in Fe/Cr multilayer by the group of Albert Fert of the University of Paris-

Sud, who first saw the large effect in multilayer that led to its naming, and first correctly 

explained the underlying physics. The discovery of GMR is considered as the birth of spintronics 

and has earned both Grünberg and Fert the 2007 Nobel prize3.  The primary advantage of GMR 

heads is greater sensitivity to magnetic fields from the disk. This increased sensitivity makes it 

possible to detect smaller recorded bits and to read these bits at higher data rates. Larger signals 

from GMR heads also help overcome electronic noise. GMR heads are expected to support area 
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densities beyond 11.6 Gbits/in². 4   The hard drive read heads in the current generation of 

computer hard drives utilize structures that consist of two layers of metallic ferromagnets (such 

as., Fe-Ni alloy) separated by a thin spacer layer (in the order of nm) of normal metal (such as Cr 

or Cu)5.  The flow of current across the spacer layer is facilitated or inhibited depending on 

whether the magnetic moments of the two ferromagnets layers are parallel or anti-parallel to each 

other.  Devices have been demonstrated with GMR ratios (i.e. the magnitude of the change, 

(Antiparallel Resistance - Parallel Resistance) / Parallel Resistance) as high as 60-70%. 

 Another success story of spintronics is room temperature tunnelling magnetoresistance 

(TMR), which was discovered in 1995 by Moodera et al6.  When the normal metal layer in a spin 

valve is replaced by a thin insulator layer, electrons’ tunnelling probability depends on the 

relative orientations of the two magnetic electrodes, and a very large TMR is achieved in such 

magnetic tunnel junctions).  The discoveries help build up the foundation for a new generation of 

magnetic random access memory (MRAM)  

 

1.2 Spintronics in Semiconductors --- Spin Injection 

 

A modern computer chip contains many millions of tiny transistors; each acting as a tiny 

switch where a small current is used to control the flow of a larger current.  Central to the success 

of modern electronics is the transistor. A transistor is a switch that controls the flow of electrical 

current.   
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The spin transistor utilizes both the spin and electronic characteristics of a conventional 

semiconductor transistor in combination with a carrier (current) flow controlled by magnetic 

moment to maximize gain. 

Figure 1.2 below are schematic diagram of a spin transistor.  Room temperature 

ferromagnetic semiconductor material will replace the n-type semiconductor both in the source 

(injector) and drain (collector) area.  A spin injector can be occupied by spin polarized charge 

carriers with selected magnetic moment.  In the collecting (drain) region, the electronic spins can 

be determined via application of an electric field, with the initial voltage applied on both the gate 

and the drain area, the current flow can be manipulated by the passing through or not via the 

magnetic barrier7.   

Unlike a normal electrical circuit that requires a continuous supply of power, these spin 

states are stable without necessarily requiring the application of an electric current, thus a spin 

transistor remains in the same magnetic state even when power is removed, which may lead to 

creating cost-effective non-volatile solid state storage device.  It is one of the technologies being 

explored for Magnetic Random Access Memory (MRAM). 
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(a) (b) 

 

Fig. 1.2 Schematic of a spin transistor. 

 

The challenges to using spintronics for logic operations are so daunting.  Not the least 

among them is finding the right material to build practical circuits.  Remarkable progress has 

been made in recent years on all fronts.  In particular, the plausibility of semiconductor 

spintronics has been bolstered by recent advances such as demonstration of coherent spin 

transport over macroscopic distances in a variety of semiconductors8 and the discovery of a host 

of magnetic semiconductors9.  However, there still have some challenge;  such as (1) how to 

make spin injection from the ferromagnetic into the semiconductor as efficiently as possible, 

because the electrical current in the semiconductor injected from a ferromagnetic metal is 

consistently found to have minimum spin polarization.  (2) What will be the mechanism of spin 

transport in semiconductors and spin detection? 
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Many approaches are being attempted to address these problems.  From materials 

synthesis point of view, for example, the use of magnetic semiconductors with crystalline and 

electrical properties compatible with conventional semiconductors and with close to 100% spin 

polarization is encouraging.  A promising group of materials are ferromagnetic oxides and 

related compounds, which are predicted to have 100%, spin polarization and referred to as “half-

metals”.10  Interface engineering to generate non-diffusive transport such as tunnelling across the 

interface is another approach to enhance the spin injection into a semiconductor.  

 

1.3 Half Metals  

 

 

Fig. 1.3 Schematic densities of states N (E) for a magnetic semiconductor below Tc 
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The conduction of the spintronic devices, either spin-valve or first generation MRAM, 

depends firmly on the spin polarization of the ferromagnetic layers, and normally it is 40% in 

alloys such as Fe, Co, and Ni.  Half metals11 are ferromagnets with an unusual band structure and 

have only one type of conduction electron states at the Fermi level (EF) shown in Fig. 1.3.  Half-

metals are 100% spin polarized based on theoretical calculation.  Well-known half-metals 

include Fe3O4, CrO2, Heusler alloys, and perovskite La0.7Sr0.3MnO3. 

 

1.4 Magnetic Semiconductors 

 

Magnetic semiconductors are materials that exhibit both ferromagnetism and 

semiconductor properties.  Whereas traditional electronics device are based on control of charge 

carriers (n-type or p-type), magnetic semiconductors would, in addition, allow control of spin 

states (up or down).  What is interesting is that they would also provide 100% carrier spin 

polarization (thus behave much like a half-metal) in principle, which is important for spintronic 

applications, e.g., spin injection in spin FET as mentioned earlier. 

An important class of magnetic semiconductor is dilute magnetic semiconductors (DMS), 

which are semiconductors doped with transition metals, i.e. electronically active elements.  A 

few established III-V compound semiconductors such as GaAs become ferromagnetic when 

doped with 3-8% Mn12, and their ferromagnetic transition temperatures can be well above 

100 K13.  These materials have been shown to act both as an acceptor and as a source of magnetic 

moment.  Efforts to increase the critical temperatures up to room temperature is being intensively 
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pursued, but researchers still face challenges of understanding the fundamental limit on the 

transition temperature and the nature of the exchange coupling in these heavily doped materials.  

A number of magnetic semiconductors are being currently investigated for their 

spintronic applications and the interesting physics involved in them.  These include 1) II-VI, III-

V and IV dilute semiconductors, 2) EuS and EuO, and 3) a host of doped oxide thin films. 

 

Fig. 1.4 Sketch of Ferromagnetic semiconductor 

 

1.5 Oxide-diluted magnetic semiconductors 

Based on the results of local density approximation of density function theory14, oxide-

diluted magnetic semiconductors (O-DMS) have attracted great interest in recent years due to the 

possibility of inducing room temperature ferromagnetism in certain oxides by transition metal 

doping.  The report of room temperature ferromagnetism (FM) in Co:TiO2 oxide15 films has high 

lighted the experimental studies.  Significant efforts were made to grow these doped oxides of 

high quality, pulsed laser deposition (PLD) and  molecular beam epitaxy (MBE) have been used 
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to synthesis the thin film form due to the non-equilibrium process. Various systems with 

interesting properties (for example, high Curie temperature and large magnetic monent) have 

been obtained.  Table I lists Properties of selected dilute magnetic semiconductor oxide thin 

films. 
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TABLE I. Properties of selected dilute magnetic semiconductor oxide thin films 

Oxide 
Eg 

(eV) 
Dopant 

M 

(µB/dopant) 
Tc(K) Reference 

V  --5% 4.2 >400 Hong et al (2004) 

Co--7% 1.4 >650 Sinde et al (2003) TiO2 3.2 

Fe --6 % 2.4 300 Wang et al (2003) 

Fe --5 % 1.8 610 Coey et al (2004) 

Co--5% 7.5 650 Ogale et al (2003) SnO2 3.5 

Mn—0.3% 20  Coey          (2005) 

V—15% 0.5 >350 Saeld et al (2001) 

Mn—2.2% 0.16 >300 P. Sharma et al (2003) 

Co—10% 2.0 
280-

300 
Ueda et al (2001) ZnO 3.3 

Ni---0.9% 0.06 >300 
Radovanovic et al 

(2003) 

Cu2O 2.0 
Co—5%, 

Al –0.5% 
0.2 >300 Kale et al (2003) 

 

These O-DMS share interesting common features such as: 1) O-DMS are made by doping 

non-magnetic oxide with transition metals.  2) The oxides are either n-type or p-type 
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semiconductors.  3) The Curie temperature Tc of the O-DMSs can be far above room 

temperature.  4) O-DMS are mainly thin films of thickness around 10-300 nm fabricated by non-

equilibrium processes.   

There also some tasks we need to fulfil, such as: 1) Confirming room temperature 

ferromagnetism in materials.  2) Achieving desirable characteristics for spintronic applications.  

3) Looking for empirical rules of the ferromagnetism.  4)  Fabricating “new” materials. 

The following topics will be discussed in the following chapters.  

In Chapter 3, the procedure for synthesis Cr and Fe-doped SnO2 by PLD is described.  X-

ray diffraction patterns indicate that Cr dissolves into SnO2.  The magnetization curves indicate 

that the Cr-doped SnO2 films are completely paramagnetic.  The Fe-doped SnO2 samples are 

ferromagnetic at 300oK and 5oK.  Zero-field-cooled (ZFC) and field-cooled (FC) curves indicate 

there are ferromagnetic particles in the films which behave superparamagnetically above the 

blocking temperature of about 100oK.  The anisotropic magnetoresistance effect was not 

observed in the Fe-doped SnO2 samples. 

In Chapter 4, the procedure for synthesis Sn0.98Cr0.02O2 magnetic semiconductors is 

described. Composition analysis and XRD patterns indicated that Cr element was incorporated 

into SnO2.  The room temperature ferromagnetism with high magnetization was obtained after H2 

treatment of the film.  In this system, local Cr atoms may establish long range ferromagnetic 

structure through sp-d interaction and local ferromagnetic structure through direct d-d exchange 

interaction between the neighbouring Cr atoms.   

In Chapter 5, I discuss the structure and magnetic properties of pure and Gd-doped HfO2 

powders and thin films.  HfO2 powders (with and without annealing in H2 flow) are not 
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ferromagnetic.  For Gd-doped (3%) HfO2 film, XRD result implies that Gd dissolves in HfO2.  

The film exhibits obvious paramagnetic signal at low temperature.  ZFC-FC curves do not show 

ferromagnetic behaviour. 
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CHAPTER 2 

EXPERIMENTAL TECHNIQUES 

 

2.1 Introduction to Pulsed Laser Deposition  

 

The main idea of pulsed laser deposition (PLD) derives from the laser material removal 

mechanism; PLD relies on the photon-material interaction to create an ejected plume of material 

from any target.  The plasma (plume) is collected on a substrate placed a short distance from the 

target.  Though the actual physical processes of material removal are quite complex, we can 

consider the ejection of material to occur due to rapid explosion of the target surface with 

superheating.  Unlike thermal evaporation, which produces a vapor composition dependent on 

the vapor pressures of elements in the target material, the laser-induced expulsion produces a 

plume of material with stoichiometry close to the target.  It is generally easier to obtain the 

desired film stoichiometry for multi-element materials using PLD than with other deposition 

technologies.  

Some major advantages of pulsed laser deposition include: 

1. It is the top choice for epitaxial deposition of oxide films.  

2. It is conceptually simple.  A laser beam ejects molecules from a target surface and 

produces a film on the substrate with the same composition as the target. 

3. It is versatile.  Many types of materials can be deposited. 
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4. It is cost-effective.  One laser can serve many vacuum systems, with quality 

comparable to molecular beam epitaxy systems which cost 10 times more.  

5. It is fast.  High quality samples can be grown reliably in minutes. 

6. It is potentially scalable.  Complex oxide preparation can be achieved for industrial 

scale volume production.  

 

Table 2.1 Comparison of major deposition methods 

 PLD Sputtering MBE 

Major Usage 
oxide thin film 

epitaxial deposition 

Metal film 

deposition 
All material 

Cost Decent Decent High 

Industry usage Yes Yes 
only III-V and II-VI 

materials 

Versatility Yes Somewhat Yes 

Speed Relatively fast Relatively fast Slow 

 

A variety of thin film deposition techniques have been employed for the preparation of 

oxide films similar to what are presented in this dissertation.  Of all the techniques, PLD and 

MBE have yielded the best quality epitaxial films.   

We use PLD as our primary sample preparation method.  Some of the important factors 

determining the quality of the PLD deposited oxide thin films are the speed of growth, the 
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intensity of the laser power, photon frequency, ambient pressure, the choice of substrate, 

substrate temperature, and post-deposition annealing. 

 

2.2 Deposition Principles and Deposition System  

 

Thin film formation during PLD generally can be divided into the following four stages: 

1. Laser radiation interaction with the target,  

2. Formation of ablation plume,   

3. Deposition of the ablated materials onto the selected substrate, 

4. Nucleation and growth of thin film.  

At Stage 1, high power pulsed laser beam ejects material from a small amount of area of 

the solid pellet target inside a high vacuum chamber.  The absorbed energy is sufficient to break 

any chemical bonds of the molecules of target material, which are subsequently deposited as a 

thin film on a substrate.  Usually, lasers with shorter wavelength (UV region) are preferred 

because at shorter wavelengths the energy of the photons are higher and the ablation occurs more 

efficiently.  The fluence of a laser pulse [laser intensity, [J/cm2]] has to be larger than a threshold 

value so that all the species can be stoichiometrically removed from the target.  

At stage 2 - 4, the particle cloud absorbs a large amount of energy from the laser beam 

producing an expansion of hot plasma (plume) in the deposition chamber.  The ablated species 

condense on the substrate placed opposite to the target, forming a thin film after some hundreds 

or thousands of laser pulses. 
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The schematics of a typical set up of a PLD system is shown in Fig. 2.1.  It includes the 

laser system, deposition systems, and vacuum system which will be further discussed in sections 

2.2.1, 2.2.2 and 2.2.3, respectively.   

 

 

Fig.2.1 Basic set up for Pulsed Laser Depostion 

 

2.2.1 Lasers  

2.2.1.1 Laser Sources -- Solid state Lasers and Excimer Lasers  
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In general, the useful range of laser wavelengths for thin-film growth by PLD lies 

between 200 nm and 400 nm.  Most target materials used for deposition exhibit strong absorption 

in this spectral region.  Both excimer and Nd 3+:YAG laser are used as the laser source.   

The excimer laser is a gas laser system; it emits radiation directly in the UV.  These 

systems have high outputs delivery and achieve pulse repetition rates up to several hundreds 

Hertz with energies near 1 J/ pulse.  Excimer KrF has the highest gain among systems with 

wavelength 248 nm.   

Nd 3+:YAG lasers are solid state alternatives to excimers lasers that are increasingly being 

used in research laboratories.  The neodymium ions serve as the active medium and are present 

as impurities in the YAG host.  The neodymium ions are pumped optically into their upper states 

by flashlamps.  High output energies are achieved by using two YAG rods in an 

oscillator/amplifier configuration.  The fundamental laser emission of  Nd 3+:YAG occurs at 1064 

nm, which can be frequency doubled with about 50% power conversion efficiency yielding an 

output at 532 nm.  With further doubling the frequency, the outputs at 355 nm or 266 nm are 

produced.   

 

2.2.1.2 Laser-Target Interaction  

The interaction between laser pulses and the target depends strongly on the intensity of 

the incoming laser beam in addition to wavelength.  In PLD, the intensity is typically brought to 

the order of -  W/cm  by a focusing lens.  The pulse duration is of a few nanoseconds.   
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The mechanisms energy transferred to the target can be understood as follows: The 

photon energy is initially absorbed by ionization and electronic excitation.  After a few 

picoseconds, the energy is transferred to the crystal lattice, and during the laser pulse, within a 

few nanoseconds, a thermal equilibrium between the electrons and the lattice is reached.  This 

leads to a strong heating of the lattice and, with continued irradiation, to a massive particle 

emission from the surface.  

2.2.2 Deposition Systems 

 

 

Fig. 2.2 Sketch of a PLD deposition chamber 

 

The temperature of deposition also needs to be selected appropriately.  In our experiment, 

for epitaxial growth of rutile structure thin films, the substrates were heated 700 C.  Some target 

materials are quite sensitive to a change in the deposition temperature; a decrease of only a few 

degrees from the optimal value may significantly degrade the crystal quality and the properties of 
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the film.  A lower temperature also increases the formation of particulates and lattice defects.  In 

our experiment, the thin films become amorphous structure if grown at temperature 300 C.   

To obtain epitaxial growth, the lattice structures of the substrate and expected thin film 

need to be match with each other.  The uniformity and crystallinity of the film can be further 

increased by rotating the target (360° endless) during the deposition process (so that laser pulses 

will not strike all the time the same spot on the target surface).   

The oxygen pressure inside the chamber can be adjusted in order to accommodate 

growing of different oxide films.  The laser-pulse repetition rate is adjusted so that it is low 

enough for the ablated species to have time to form a smooth layer between successive pulses.  

Too low a repetition rate has to be avoided since fast chemical reactions may hinder the epitaxial 

growth of the film.  Pulse duration of the laser, repetition rate and spot size on the target also 

need to be optimized in order to minimize the number of particulates that come out of the target 

surface when collecting too much of energy in a single pulse.  

2.2.2.1 Ablation Plume 

Some atoms in the vapour from the ejected material are ionized.  The particle cloud 

absorbs energy from the laser beam and becomes more ionized.  Finally, fully ionized plasma is 

formed in the vicinity (about 50 µm) of the target16.  The plasma expands away from the target, 

with a strongly forward-directed supersonic velocity distribution.  A photograph of the plume is 

shown in Fig. 2.3,  The visible part of the particle jet is referred to as an ablation plume.  The 

plume consists of several types of particles: neutral atoms, electrons, and ions.  Furthermore, 

clusters of different compounds of the target elements are observed near the target surface.  The 

visible light of the plume is due to fluorescence and recombination processes in the plasma.   
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Fig. 2.3 Photograph of the plume17 

2.2.3 High Vacuum System 

High vacuum (HV) is the regime characterized by pressure from 1×10-3 to 1×10-9 Torr 

(100 mPa to 0.1 µPa).  HV requires the use of special materials, cleanliness, and baking the 

entire system to remove water and other trace elements.  Pressure is measured by an  ionization 

vacuum gauge.  At low pressure, gas molecules rarely collide.  The mean free path of a gas 

molecule at 10-5 Pa (~10−7 Torr) is approximately 40 km, so gas molecules will collide with the 

chamber walls many times before colliding with each other.  Almost all interactions therefore 

take place at various surfaces in the chamber. 

HV is necessary for our thin film growth to reduce surface contamination, by reducing the 

number of molecules reaching the sample over a given time period.  At 0.1 mPa (10−6 Torr), it 

only takes 1 second to cover a surface with a contaminant, so relatively  lower pressures are 

needed for long experiments to minimize the contamination of the films. 

 To achieve HV, a system needs the following: 
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• High pump speed 

• Minimized surface area in the chamber 

• High conductance tubing to pumps — short and fat, without obstruction 

• Use low-outgassing materials such as certain stainless steels 

• Avoid creating pits of trapped gas behind bolts, welding voids, etc. 

• Electropolish all metal parts after machining or welding 

• Use low vapor pressure materials (ceramics, glass, metals, teflon if unbaked) 

• Bake the system (250 °C to 400 °C) to remove water or hydrocarbons adsorbed to 

the walls 

• Chill chamber walls to cryogenic temperatures during use 

• Avoid all traces of hydrocarbons, including skin oils in a fingerprint — always 

use gloves 

In our setup, base vacuum pressure during deposition better than 10-7 Torr is ensured by 

the Turbo V-550 turbo molecular pump (Varian Vacuum Products), which is supported by a 

mechanical fore-pump.  Deposition can be made in vacuum or in the presence of reactive gases 

with pressures up to a few mTorr.  

 

2.3 Film Growth by Pulsed Laser Deposition.  

2.3.1 Substrate Materials for O-DMS Films 
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High-temperature O-DMS films have been grown successfully on many different 

substrates.  A general requirement for a good substrate material is that, for certain orientations, 

the lattices of the substrate and film match.  Thermal expansion coefficients of the materials 

should also be close such that the film does not break during the cool down to low temperatures.  

If the mismatch of either of these parameters is large, the maximum thickness of the film that can 

be grown epitaxially, if at all, is limited.  Furthermore, a proper substrate material does not react 

chemically with the film and preferably is compatible with semiconductor technology.  In 

addition, device applications impose a number of additional requirements on the substrate.  

Depositing films on these substrates is a rather straightforward process and, therefore, they are 

used in the preparation of several microelectronic components.  On the other hand, the films 

often have a large dielectric constant, which should be taken into consideration.  

Substrates we use include R-plane -Al2O3 (012) for SnO2 film deposition and Si (400), 

Al2O3 (012) and LaAlO3 (100) for HfO2 film deposition 

 

2.4 Thin Film Characterization 

2.4.1 X-Ray Diffraction                                                                                                                               

X-ray diffraction (XRD) is one of the most important non-destructive tools to analyse all 

kinds of materials - ranging from films to powders and crystals.  From research to engineering 

and production, XRD is an important tool for materials characterization and quality control.  In 

our research, we use a Philips X’pert PW3040 MPD diffractometer using Cu Kα to identify the 

specimens’ crystal structure and crystallographic orientation of the films.  
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2.4.2 Physical Properties Measurement System (PPMS) 

Physical properties measurement system (PPMS) manufactured by Quantum Design was 

used to make most of the electron transport measurements.  The specific equipment used was 

Model 6000 PPMS.  This model allows for variable temperature and magnetic field 

measurements.  The temperature range is from 1.9 K to 400 K, and the magnetic field can go up 

to 14 T.  The cooling of the PPMS and the superconducting magnet inside is via liquid helium 

introduced into a region called cooling annulus (shown in figure 2.5). 

 

Figure 2.5: Cutout diagram of PPMS 6000 by Quantum Design [Copyright Quantum 

Design]. 
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2.4.3 Superconducting Quantum Interference Device (SQUID)  

 

Fig.2.6 SQUID equipment (MPMS XL-7T, Quantum Design, Inc)  

 

SQUID utilizes the superconducting quantum interference effect and can make the most 

sensitive magnetic measurements to date.  The MPMS-XL7 from Quantum Design, Inc (Fig. 2.6) 

is capable of changing the magnetic field between -7 to 7 Tesla. The measurements can be 

carried out at any temperature with accurate temperature control from 1.9 to 400 K.  The 

differential sensitivity is 10-8 emu and the instrument can make both DC & AC susceptibility 

measurements.  
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The four-point-probe method was used to measure the electrical transport properties of 

the thin films.  Fig. 2.7 shows a schematic diagram of the four-point-probe measurement set-up.  

In the figure shown, the current is applied through probes 1 and 4 and the voltages measured 

between probes 2 and 318. 

 

Figure 2.7: Schematic of a four-point-probe measurement set-up for a thin film 

2.4.4 Transmission Electron Microscope (TEM) 

Transmission electron microscope (TEM) operates on the same basic principles as the 

light microscope but uses electrons instead of light.  Therefore TEM is limited by the wavelength 

of the electrons.  TEMs use electrons as the "light source" and their much lower wavelength 

makes it possible to get a resolution a thousand times better than with a light microscope.  We 

can see objects at a scale of a few angstroms.  

A "light source" at the top of the microscope emits the electrons that travel through 

vacuum in the column of the microscope.  Instead of glass lenses focusing the light in the light 

microscope, the TEM uses electromagnetic lenses to focus the electrons into a very thin beam.  

The electron beam then travels through the specimen one wants to study.  Depending on the 

density of the material present, some of the electrons are scattered and disappear from the beam.  
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At the bottom of the microscope the unscattered electrons hit a fluorescent screen, which gives 

rise to a "shadow image" of the specimen with its different parts displayed in varied darkness 

according to their density.  The image can be studied directly by the operator or photographed 

with a camera19. 

 

Fig. 2.9 Transmission Electron Microscope 

 

The TEM we use is a JEOL 2010 Transmission Electron Microscope, which has a wide 

range of capabilities such as high-resolution image observation with 0.23 nm point resolution and 

0.14 lattice image, EDS (Energy dispersive X-ray spectrometry) for element analysis, and 

versatile analysis by electron diffraction.  The magnification goes from 1,500 to 1,200,000×.  The 

Maximum accelerating voltage is 200kV.  
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CHAPTER 3 

THE STRUCTURE AND MAGNETIC PROPERTIES OF TIN DIOXIDE THIN FILMS 

 

3.1 Introduction  

In the studies of room-temperature ferromagnetism (RTFM), there are various types of 

transition-metal (TM) doped-oxide thin films, such as TM-doped ZnO, TM-doped TiO2, or TM-

doped SnO2.  There are a number of controversial issues that need to be clarified20: for example, 

why a clear correlation between the Curie temperature TC and the concentration of the magnetic 

dopant element has not been established; and why doping by nonmagnetic elements, such as V 

and Cu21, can sometimes result in strongly ferromagnetic samples; why, in some cases, bulk 

samples are not magnetic but the thin films of the same compositions are magnetic.  In these 

materials, the ferromagnetism cannot simply be attributed to a secondary phase, although 

existing theories of magnetism can not explain it.  Several mechanisms are possible: carrier 

mediated exchange coupling, spin polarons, short range superexchange, and defects induced 

magnetism.  Furthermore, in DMS, nonmagnetic host ions are partially substituted by the 

magnetic dopants, which are randomly localized over the host lattice.  Thus, it is difficult to use a 

simple theory to completely explain everything. 

Following the initial discovery of room temperature ferromagnetism in Co-doped TiO2 of 

anatase structure, ferromagnetism was also found in doped TiO2 rutile thin films.  The latter 

seems more interesting from many perspectives.  For example, the anomalous Hall Effect22, a 

key indication of a genuine ferromagnetic state, and magnetic circular dichroism23 has been 
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simultaneously observed in rutile films that exhibit ferromagnetism24.  Researchers are thus 

looking at other materials having the same rutile-type structure.    

SnO2 a wide band gap semiconductor with Eg=3.6 eV 25 , and up to 97% optical 

transparency in the visible range, crystallizes in rutile structure, Measurements of magnetic 

properties of TM doped SnO2 vary vastly.  Mn-doped SnO2 was reported to show a large 

magnetoresistance at low temperature and paramagnetic behaviour26.  While others reported that 

it is ferromagnetic with TC equal to 340 K27.  Fe and Co-doped SnO2 have been found to be 

ferromagnetic with TC ranging from 360 K to 650 K.28, 29, 30  Co-doped films have a rather high 

magnetization of 7.5µB per Co and 7.5µB per Co respectively.31,32 Ni-doped SnO2 was reported to 

have a TC  =  400 K and magnetization of 2µB per Ni.33, 34, 35  Some synthesized powder36  such as 

Sn0.99Fe0.01O2 also showed high Curie temperature TC=850 K.  Much of these results are still 

controversial due to the difficulty in resolving the true origin of the observed magnetic signals.  

In order to clarify the confusion about these experimental results and for the reasons given above, 

we have investigated Cr and Fe doped SnO2 films grown by PLD and studied their magnetic and 

transport properties.  
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Fig. 3.1 Rutile structure SnO2
37

 

3.2 Experiments 

 

FexSn1–xO2 and CrxSn1–xO2 (x = 0, 0.02, 0.06, 0.10, 0.20) thin films were grown on -

Al2O3 (012) substrates by PLD.  Before deposition, the substrates were put in strong acid (HCL : 

HNO3 ~ 3: 1) for 20 hours, to remove the weak ferromagnetic signal (about 10-5 emu) found in 

the as-purchased substrates.  The targets were prepared using standard ceramic techniques.  The 

films were prepared in vacuum at a substrate temperature of 970 K.  The pressure during 

deposition was 2×10–6 Torr.  The pulsed excimer laser uses KrF ( = 248 nm) and produces a 

laser beam of intensity (fluence) of 1–2 J/cm2 and repetition rate of 10 Hz.  The Fe concentration 

of the films was measured with energy dispersive x-ray analysis in TE mode, and was consistent 

with those of the targets.  The crystal structure was investigated by x-ray diffraction (XRD) with 

Cu K  radiation.  The magnetic properties were studied with a superconducting quantum 



 30

interference device (SQUID) magnetometer.  The transport properties were measured with a 

physical property measurement system (PPMS) from Quantum Design.  

3.3 Results and Discussion 

 

Fig. 3.3  XRD diffraction pattern of Cr0.2Sn0.8O2 film. 
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Fig.3. 4 Interplanar spacing of (101) plane as a function of Cr concentration. 

Solid line is the theoretical value and dots are our experimental results. 

 

Figure 3.3 shows the XRD pattern for a Cr0.2Sn0.8O2 film grown on R-plane -Al2O3 

(012).  The film is single phase and of rutile type with (101) plane parallel to the film plane.  The 

two peaks show (101) and (202) reflections of doped SnO2.  The other three peaks are from the 

substrate -Al2O3 (012), (024) and (036).  Similar XRD patterns were obtained for all films with 

different Cr and Fe contents suggesting that the films are epitaxially grown.  These results are 
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consistent with the work of other groups.11, 10   For Fe-doped SnO2 films with fast deposition rate, 

XRD patterns reveal impurity phases in the films.   

Detailed study of SnO2 (101) and (202) peaks of CrxSn1–xO2 thin films reveals that they 

have a systematic shift toward higher angles, which means that the interplane spacing decreases 

continuously with the increase of Cr concentration (See Figure 3.4).  CrO2 also crystallizes in 

rutile structure.  If we assume that Cr substitutes Sn continuously in SnO2, the interplanar spacing 

should exhibit a linear change with Cr concentration as is indeed shown in Figure 2.  This clearly 

indicates that Cr dissolves in SnO2.  On the other hand, for Fe doped SnO2 film, the interplanar 

distance is almost independent of the Fe concentration, up to 20% doping.  Since the radius of Sn 

(IV) ion is 0.083 nm whereas the radii of Fe (III) and Fe (IV) ions are 0.069 and 0.0725 nm, 

respectively, doping Fe in SnO2 should have resulted in a change of lattice parameter of SnO2.  

Our XRD result does not indicate that Fe dissolves in SnO2. 

The observation of room-temperature ferromagnetism in these materials must be 

accompanied by a careful identification of the phases and microstructures present in order to 

accurately identify the origin of the magnetism11,38 as will be discussed in detail in next chapter.  
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Fig. 3.5 Magnetization curves of Cr0.2Sn0.8O2 film measured at 5 K and room temperature. 

The magnetic field was applied parallel to the film surface. 
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Fig. 3.6 Cr0.2Sn0.8O2 ZFC-FC curves with H = 100 Oe. 

 

Magnetic properties of Cr doped SnO2 films are shown in Fig. 3.5.  The hysteresis loops 

show that all Cr-doped films are paramagnetic at 300 and 5K, which is different from a recent 

report.11   A very weak ferromagnetic signal of about 1×10-6 emu was observed in all Cr-doped 

samples.  Since this kind of signal also appears in pure SnO2 samples, we do not think it comes 

from doped Cr.  Both ZFC and FC curves (see Fig. 3.6) show a temperature dependence of 

magnetic susceptibility that fits Curie-Weiss law, which is another evidence of paramagnetism in 

Cr doped SnO2 samples. 
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Fig. 3.7 Temperature dependence of resistance for Fe0.06Sn0.94O2 film. 
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Magnetic properties of Fe doped SnO2 films are shown in Figure 3.7.  The hysteresis loop 

exhibits ferromagnetic property at room temperature as reported previously.  The coercivity of 

the films is about 500 Oersted.  At 5 K, the hysteresis loop exhibits similar behavior to the ones 

at room temperature except that the coercivity increases to about 800 Oersted and magnetization 

increases slightly.  The magnetic moment per Fe atom is 1.0 µB/Fe.  ZFC-FC curves exhibit a 

blocking temperature of about 100 K.  This blocking behavior implies that there are precipitated 

ferromagnetic particles in the films which are partially responsible for the ferromagnetic property 

of Fe-doped SnO2.  The hysteresis observed at room temperature indicates that some larger 

particles are not yet superparamagnetic and are still blocked.   

The transport measurements indicate that the Fe doped SnO2 films have very high 

resistance (about 107 ohm) at room temperature and the temperature dependence of the resistance 

is characteristic of a semiconductor with an activation energy of about 230 meV (Figure 3.8).  

The activation energy is sensitive to the oxygen pressure during the preparation, varying from 

tens of meV (in vacuum) to hundreds of meV (in air) for pure SnO2, 39 and is also depend on the 

doping elements and doping level.  Coey et al. reported an activation energy of 75 meV in Fe 

doped SnO2 after heating in vacuum12.  It is not clear whether the observed value of 230 meV is 

associated with the presence of Fe or the amount of oxygen vacancies.  Neither 

magnetoresistance signal nor anisotropic magnetoresistance (AMR) effect has been observed.  

The observation of the latter would be an indication of intrinsic ferromagnetism.  
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Fig. 3.8 Temperature dependence of resistance for Fe doped SnO2 film 

 

3.4 Conclusions 

We have prepared Cr and Fe-doped SnO2 films by PLD.  X-ray diffraction patterns show 

that the films are of rutile structure and grown along (101) plane.  The diffraction peaks of Cr-

doped SnO2 exhibit a steady shift toward higher angles with increasing Cr concentration.  This 

indicates that Cr dissolves in SnO2.  On the other hand, XRD experiments do not show similar 

results for Fe-doped films.  The magnetization curves indicate that the Cr-doped SnO2 films are 
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completely paramagnetic.  The Fe-doped SnO2 samples are ferromagnetic at 300 and 5 K.  Zero-

field-cooled (ZFC) and field-cooled (FC) curves indicate there are ferromagnetic particles in the 

films which behave superparamagnetically above the blocking temperature of about 100 K.  The 

anisotropic magnetoresistance effect was not observed in the Fe doped SnO2 samples. 
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CHAPTER 4 

ROLE OF DEFECTS IN TUNING FERROMAGNETISM IN DILUTED MAGNETIC 

OXIDE THIN FILMS 

 

4.1 Introduction 

 

As discussed in chapter 3, we have synthesized the Cr and Fe doped SnO2 films which 

were deposited on Al2O3 substrates by pulsed laser deposition.  X-ray diffraction patterns show 

that the films have rutile structure and grown epitaxially along (101) plane.  The transport 

measurements indicate that the Fe doped SnO2 thin films show high resistance (about 107 ohm) at 

room temperature and the temperature dependence of the resistance is characteristic of a 

semiconductor with calculated activation energy of about 230 meV. It is known that the 

activation energy depends sensitively on the oxygen pressure during the preparation and varies 

from tens of meV (in vacuum) to hundreds of meV (in air) for pure SnO2.
40

  It also depends on 

the doping elements and doping level.  Coey et al 41 reported an activation energy of 75 meV in 

Fe doped SnO2 after heating in vacuum.  Since we have not done a systematic study on the 

oxygen content and Fe doping dependence of the activation energy, it is difficult to speculate 

whether the observed value of 230 meV is associated with the presence of Fe.  However, the 

difference between the values of this study and Ref. 41 may suggest that our samples contain less 

oxygen vacancies than the heat treated sample.  
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As mentioned in Chapter 3, the origin of the ferromagnetism at room temperature is still 

an open question.  Our previous study on Fe-doped TiO2 and other investigations suggest that 

oxygen deficiency is important for the samples to exhibit ferromagnetism 2.  Oxygen vacancies 

were proposed as the origin for the ferromagnetism observed in undoped HfO2.42   Various 

experiments and theoretical models suggest that oxygen vacancy may play a critical role in the 

magnetism43,44,1. We continue this investigation and try to understand the relationship of oxygen 

vacancy with respect to the magnetic properties in Cr doped SnO2 thin films.  

 

4.2 Experiment 

CrxSn1–xO2(x = 0, 0.02, 0.06, 0.10, 0.20) thin films were grown on -Al2O3 (012) 

substrates in vacuum at a substrate temperature of 970 K by PLD technique (KrF , = 248 nm, 1–

2 J/cm2  10 Hz.).  Before deposition, the substrates were put in a strong acid (HCl: HNO3 ~ 3: 1) 

for 20 hours.  

In order to elucidate the effects of oxygen vacancies on magnetism, selected samples of 

Cr:SnO2 were also postannealed at 300 °C, 400°C, 500°C, 600°C during 10-12 hours in flowing  

H2 atmosphere.. 

The Cr concentration of the films was measured with energy dispersive x-ray analysis in 

TE mode, and they were consistent with those of the targets.  The crystal structure was 

investigated by x-ray diffraction (XRD) with Cu K  radiation.  The magnetic properties were 

studied with a superconducting quantum interference device (SQUID) magnetometer. The 

transport properties were measured with a physical property measurement system (PPMS) from 

Quantum Design. The magnetic properties were measured by a superconducting quantum 



 41

interference device (SQUID) system from 5  K to 300K.  For both magnetism and 

magnetoresistance measurements, the magnetic field is applied in the film plane.  Although the 

samples with various Sn1–xCrxO2 compositions were prepared, here we mainly report the 

experimental results of the Sn0.98Cr0.02O2 sample.  

 

4.3  Experimental Results and Didcussion  

4.3.1 SEM result 

 The microstructures of the samples were examined using scanning electron microscopy 

(SEM).  It is observed that heat treatment at different temperature of ambient have noticeably 

different effects on the thin film.  For annealing temperatures of 400°C and above, the thin films 

were destroyed, as shown in the SEM photos in Fig. 4.1. At annealing temperatures below 

300°C, the crystal structure of the films were still retained while the resistivity decreases. 

 



 42

 

Fig.4.1 SEM photos of Cr0.02Sn0.98O2annealed at temperatures of 600°C. 

 

4.3.2 Magnetic properties  

Figure 4.2 shows the comparison of the hysteresis loops measured at 5 K and 300 K, after 

and before the H2 treatment.  The M[H] curves  show a well defined hysteresis loop, note that the 

shape of M[H] curves taken at 300 and 5K are quite similar indicating that the samples are 

certainly in a ferromagnetic state over a certain range of temperature.   The ferromagnetism is 

clearly shown by the coercivity, remanence, and the low saturation field after H2 treatment in 

both 5 K and 300 K.  The data leads us to conclude that annealing in hydrogen leads to a 

ferromagnetic state in Cr-doped SnO2 at room temperature.  As for the origin of the 
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ferromagnetism, it may be attributed to the oxygen vacancies induced by the H2.  The defect 

levels created by the O vacancies can supply s, p carriers and lead to the spin-spin exchange 

interaction between the s, p carriers and the localized d electrons of Cr.  There may be also direct 

d-d exchanges interaction between the neighbor Cr atoms if Cr atoms segregate in the host 

lattice, however this latter scenario is less likely in our samples.   
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Figure 4.2 The comparison of hysteresis loops measured at 5K and 300 K, after and 

before the H2  treatment respectively 
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4.3.3 Resistance vs Temperature 
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Fig. 4.3 Resistance vs Temperature of 2% Cr doped thin film before and after H2 

treatment under 300°C 

 

The film has the resistivity in the range of semiconductor and shows semiconducting 

temperature dependence in Fig. 4.3 and the magnetic moment increase after the H2 treatment. 

Fig. 4.4 indicates that the activation energy of the Cr-doped SnO2 films dropped from 81.506  

meV to 47.076 meV  when using 0
1ln ln aER R

k T
= +  within temperature range from 160K to 

300K.  Therefore, we conclude that the annealing in a reducing atmosphere does decrease the 

activation energy as a result of increased oxygen vacancies in the films, and changes the 

magnetic properties of the film.  The thin films did not show any AMR. 



 45

0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060 0.0065

59874.14172

162754.79142

Ln
(R

)

1/T
 

Fig. 4.4  Linear fit for Cr-doped SnO2 thin film before H2 treatment at higher temperature 

from 160K to 300K Label axes 

 

4.4 Conclusions 

In summary, Sn0.98Cr0.02O2 magnetic semiconductors were synthesized. Composition 

analysis and XRD patterns indicated that Cr element was incorporated into SnO2.  The film 

obtained after H2 treatment is ferromagnetic at room temperature as confirmed by the magnetic 

hysteresis curves shown in Fig. 4.2, it is also confirmed by the ZFC-FC results.  From our 

transport measurement, we calculated the activation energy, which did decrease from 81.506 

meV to 47.076 meV, which can be explained by the increase in the defects/oxygen vacancies by 

H2 treatment of the films.  In this system, local Cr atoms may establish long range ferromagnetic 

ordering through sp-d interaction and local ferromagnetic ordering through direct d-d exchange 
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interaction between the neighbouring Cr atoms.  The anisotropic magnetoresistance (AMR) was 

not observed in the samples.   

We also attempted to repeat the similar H2 treatment in our 6% Cr doped thin film 

sample, but did not obtain confirming results because of the phase change of the film.  
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CHAPTER 5 

STRUCTURE AND MAGNETIC PROPERTIES OF PURE AND GADOLINIUM-

DOPED HAFINIUM DIOXIDE THIN FILMS 

 

5.1 Introduction   

HfO2
45, CaB6 

46,47 ,48 , 49 and CaO50 have been found, or predicted, to exhibit unusual 

ferromagnetic behaviors, which can not be explained by the conventional mechanisms for 

ferromagnetism (ferromagnetism contributed by magnetic ions).  Theoretical calculations 

indicate their ferromagnetism may be related to cation or anion vacancies.  It has been proposed51, 

52 that thin film deposition processes may create necessary oxygen vacancies to provide carriers 

and induce magnetic moments, which establish magnetic states.  Such hypothesis is currently 

being debated and demands experimental study.  

HfO2 is a wide-band insulator with high dielectric constant.  The possibility of making the 

material ferromagnetic may widen their applications in spintronics.  As nonmagnetic as HfO2 is, 

the discovery of ferromagnetic phenomenon in pure thin films53  was a surprise.  These films are 

found ferromagnetic, with a Curie temperature exceeding 500 K and a magnetic moment of about 

0.15 Bohr magnetons per HfO2 formula unit.  The magnetization of the thin films is remarkably 
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anisotropic, being up to three times greater when the magnetic field is applied perpendicularly to 

the plane of the film than when it is applied in the parallel direction. 

Since dielectric oxide HfO2
 films, where neither Hf4+ nor O2– is magnetic, may leave Hf 

atoms with an empty d shell, the phenomenon was initially termed d0 magnetism.  It was 

suggested that the magnetism probably arose from partially filled d orbitals originating from 

hafnium atoms coordinating oxygen vacancies (VO).  The isolated cation vacancies in HfO2 

could form high-spin defect states, and therefore, could be coupled ferromagnetically with a 

rather short-range magnetic interaction resulting in a ferromagnetic state  

In this chapter, I report the synthesis of pure and Gd-doped HfO2 powders and thin films 

and discuss their structure, transport and magnetic properties.  The goal is to investigate the 

effects of defects, controlled through annealing, on the magnetic properties of both the thin films 

and powers.  

 

5.2  Pure HfO2 Thin Films  

5.2.1 Experiments 

Pure and Gd-doped HfO2 targets were prepared by standard ceramic techniques using 

both 99.99% and 99.995% pure HfO2 and 99.99% pure Gd2O3 powders.  The thin films were 

deposited on single crystal silicon (400), R-Al2O3 (012), and LaAlO3 (100) substrates using a KrF 

excimer laser with substrate temperature of 700±20 °C.  The laser was operated at 10 Hz and was 

focused through a 30 cm focal length lens onto a rotating target at 45° angle of incidence.  The 

energy density of the laser beam at the target surface was maintained at 1–2 J/cm2.  The target-to-



 49

substrate distance was about 3 cm.  Films were deposited with a base pressure of  5×10–7  Torr at 

a growth rate of about 0.15  Å/s. 

The crystal structure of the films was investigated by x-ray diffraction (XRD) with 

Cu K  radiation and high resolution transmission electron microscopy (HRTEM) with energy 

dispersive spectroscopy (EDS). The magnetic properties were studied with a superconducting 

quantum interference device (SQUID) magnetometer.  

 

5.2.2 Structure Analysis  

Figure 5.1 is the XRD pattern of a pure HfO2 thin film deposited on Si (400) substrate. 

Besides Si substrate peaks, the rest peaks match the simple monoclinic phase of HfO2. Similar 

XRD patterns have been obtained for HfO2
 films deposited on Al2O3 and LaAlO3 substrates.  
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FIG. 5. 1 XRD pattern of a pure HfO2 thin film. 

 

High resolution transmission electron microscopy images (Fig.5.2) show a columnar 

structure in the HfO2 films, and the film thickness is typically in the range of 200 nm. The 

thickness is also confirmed by Rutherford backscattering spectrometry (RBS). RBS results also 

showed no impurity in the thin films, and this is also confirmed by EDS analysis.  
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FIG.5.2 HREM image of the pure HfO2 thin film. 
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5.2.3 Magnetic Properties  

Fig. 5.3 shows that the thin film is ferromagnetic at 300 K and 5 K for the pure HfO2
 

(pureness 99.95%) film deposit on Si substrate.  The magnitude of the observed magnetic 

moments is in the order of 10-6 emu.  Fig. 5.4 show magnetization anisotropy of the thin film, 

which is approximately tripled when the magnetic field is applied perpendicularly to the plane of 

the thin film than applied in parallel, and this agrees with the result of Venkatesan et al.1  

The anisotropy discussed above (Fig. 5.4), with magnetic field applied perpendicular and 

parallel to the thin film, was measured by inserting a 5×3 mm film sample into the measuring 

plastic straw.  Two holes were cut on the straw to hold the sample in place.  To investigate this 

further, we have measured the film with “complete” plastic straw (without two cuts).  The results 

suggest the straw with holes itself introduces the “anisotropy”.  The M-H curves of the straw 

with holes, in the absence of a film, show a weak magnetic signal of 10-6 emu.  
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Fig. 5.3 the [M (H)] curves taken at 300 K and 5 K showing hysteresis loops 
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Fig. 5.4 magnetization of the thin film anisotropy 

  

5.2.4 Signals From The Substrates 

The method normally employed to measure the magnetic signal from the thin film is to 

subtract the signal of substrate from that which combines the substrate and thin film.  Fig. 5.5 is 

the magnetization curve of Al2O3 substrate alone, which shows that the substrate itself has a 

magnetic signal comparable to our HfO2 thin film on the Al2O3 substrate.  This casts doubt on the 

accuracy of the measurement results presented earlier.  After washing the same substrate with 
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acid, the magnetization curve (Fig. 5.6) showed a dramatic decrease in the magnetic signals, 

from 10-5 emu down to 10-7 emu, which confirmed that there were magnetic impurities on the 

substrate.  A similar signal difference before and after the acid wash was also confirmed for Si 

substrates.  Thereafter, all substrates for deposition were cleaned in strong acid (HCl: 

HNO3~3:1) for 20 h to get rid of the magnetic impurities.   

 

 

Fig. 5.5 Magnetization of Al2O3 substrate 
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Fig. 5.6 Al2O3 substrate with acid wash. 

 

HfO2 powder of purity 99.95% is not the purest available, and the most likely impurity is 

ZrO2.  ZrO2 thin film was deposited on the Si substrate under the same conditions as HfO2.  Fig. 

5.7 shows the weak magnetic signal at 10-6 emu, which is in the same order of magnitude as the 

thin film shown in Fig. 5.4.  The above data do not suggest ZrO2 is ferromagnetic, rather they 

hint at the potential common source of the contamination.    
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Fig. 5.7 Magnetic properties of ZrO2 thin film on the SiO2 substrate 
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Fig. 5.8 The magnetization curves measured at 300 and 5  K for the purer HfO2
 (purity: 

99.995%) film on Si substrate. 

 

The effect of the purity of the raw HfO2 was investigated.  Figure 5.8 shows the 

magnetization curves measured at 300 and 5 K for films made of purer HfO2
 (purity = 99.995%) 

grown on Si substrate. An extremely weak ferromagnetic signal of about 5×10–7 emu was 

observed.  If we assume that the measured signal is attributed to the HfO2 films, the moment of 

the film is approximately equivalent to 0.0003  Bohr magneton per Hf ion, an extremely small 
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value.  Moreover, considering the contribution from either the impurities in the target material or 

the residual impurities on the substrates, we conclude that our as-deposited HfO2 films itself are 

not ferromagnetic.   

The possible effects of defects/oxygen vacancies were studied on an as-deposited HfO2 

films by annealing it in air at 1000 oC, in an attempt to change the amount of oxygen vacancies.  

As shown in Fig. 5.9, no visible changes in the magnitude of the magnetization was seen.  The 

mechanism for magnetism in these thin films appears not intimately connected to the defects or 

oxygen vacancies.  Our study described above suggests that one needs to be extremely careful 

when drawing conclusions based on weak magnetic signals as low as 10–6emu. 
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Fig. 5.9 Magnetization for HfO2 film grown on Al2O3 annealed at 1000 oC. 

 

5.3 Gd Doped HfO2 Thin Film 

As a wide band gap dielectric material with nonmagnetic 4f14.5d2.6s2 configuration, HfO2 

itself contributes no net moment.   Theoretically, the medium of exchange by small amounts of 

impurity of the 4f band structure leads to 4f to 5d intra-atomic hybridization, and overlap with 

the unoccupied band structure just above the Fermi level, which may result in net overall 

magnetization. 54   Therefore, Gd (electrical outer shell structure 4f7.5d1.6s2), which have 
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relatively large magnetic moment among the rare earth elements, was chosen as the impurity to 

be doped in our HfO2 thin film.  

Fig. 5.10 is the XRD pattern of a Gd doped HfO2 thin film deposited on Si (400) 

substrate.  Other than the Si peaks from the substrate, all peaks match those of the simple 

monoclinic phase of HfO2.  Gd-doped HfO2 thin films have the same XRD pattern except that 

their diffraction peaks have a small shift toward lower angles. For example, (111) peak is shifted 

by 0.18° from 28.29° to 28.11°, which means that the lattice parameter increases after the Gd 

doping. The ionic radii of ionized Gd (Gd3+) are 0.1078 nm (six coordinate) and 0.1193 nm 

(eight coordinate), whereas the ionic radii of Hf4+ are 0.085 and 0.097 nm for the corresponding 

coordinates. Since the radii of Gd3+ are larger than those of Hf4+, our XRD result implies that Gd 

dissolves in HfO2 substitutionally.  
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Fig.  5. 10 XRD patterns of a pure and Gd-doped HfO2 thin film. 

 

The film exhibits obvious paramagnetic signal, instead of ferromagnetic behaviour, in 

low temperature as shown in ZFC-FC curves (as shown in Fig. 5.11 a).  
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Fig. 5.11 (a) The magnetization curves at 300 and 5 K. 

 (b) ZFC-FC curves (H=100 One) for 3 at% Gd-doped HfO2 thin film. 
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5.4 Defects Hypnosis 

 

5.4.1 HfO2 Thin Film 

Different substrates should result in different interfaces and defect structures at the 

interfaces between the thin film and substrate, which may be the source of the ferromagnetism.4,55   

In order to alter the interface structure between the film and substrate, HfO2 films were deposited 

on Al2O3 (012) and LaAlO3 (100) substrates in addition to Si substrate.  Our experiments (shown 

in Fig. 5.12) suggest no obvious difference in the magnetic properties of the HfO2 films deposited 

on three different substrates (please also refer to Fig. 5.3 and Fig. 5.5).  
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Fig. 5.12 Magnetization curve for HfO2 film grown on LAO 

 

All thin films were annealed in air at 700, 900, and 1000 °C to determine if annealing 

might change the defects in the HfO2 films and influence their magnetic behaviour.  In otherwise 

nonmagnetic compound such as CaB6 and CaO, like HfO2, the magnetism is considered to be 

driven by intrinsic point defects. However, the magnetic signal observed did not change with 

annealing or with temperature.  
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HfO2 films were also deposited at room temperature in order to vary the defect density in 

the films. The films were found to be amorphous by XRD measurements. The magnetic signal 

was extremely weak, in the magnitude of 10-6 emu.  

 

5.4.2 HfO2 Powder 

In addition to the films, HfO2 powders of different purity were annealed at different 

temperature (700, 900, and 1100 °C) and in different atmospheres.  XRD measurement indicates 

that there is no phase change for the HfO2 powders after annealing under different atmospheres 

(shown in Fig. 5.13).   Magnetic measurements show that neither the original powders nor 

annealed ones are ferromagnetic. The defects introduced by hydrogen reduction carried out here 

did not affect the magnetic behaviour of the powders, as shown in Fig. 5.14 and 5.15.  
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Fig. 5. 13 XRD measurements for the HfO2 powders before (E-) and after annealing at Ar and H2 

atmosphere  
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 Fig. 5. 14 Magnetization curve for 99.95% HfO2 power 
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Fig. 5.15 Magnetization curves for 99.995% HfO2 power. 

 

 

5.5 Conclusion 

Our HfO2 films deposited on Si (400), Al2O3 (012) and LaAlO3 (100) substrates by PLD 

do not exhibit ferromagnetic properties, which is different from some of the reported data.  The 

magnetic signal of the HfO2 films does not change significantly with annealing at various 

temperatures and in different reducing atmospheres.  HfO2 powders (with and without annealing 
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in H2 flow) are not ferromagnetic.  For Gd-doped (3%) HfO2 film, XRD result implies that Gd 

dissolves in HfO2.  The film exhibits paramagnetic signal at low temperature.  ZFC-FC curves do 

not show ferromagnetic behaviour.  
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