72 research outputs found

    Disruption of type 3 adenylyl cyclase expression in the hypothalamus leads to obesity

    Get PDF
    Evidence from human studies and transgenic mice lacking the type 3 adenylyl cyclase (AC3) indicates that AC3 plays a role in the regulation of body weight. It is unknown in which brain region AC3 exerts such an effect. We examined the role of AC3 in the hypothalamus for body weight control using a floxed AC3 mouse strain. Here, we report that AC3 flox/flox mice became obese after the administration of AAV-CRE-GFP into the hypothalamus. Both male and female AC3 floxed mice showed heavier body weight than AAV-GFP injected control mice. Furthermore, mice with selective ablation of AC3 expression in the ventromedial hypothalamus also showed increased body weight and food consumption. Our results indicated that AC3 in the hypothalamus regulates energy balance

    Smart Community Service Brand Functional Value and Sustainable Brand Relationship—The Mediating Role of Customer Emotional Cognition

    Get PDF
    More and more companies are developing customer service by building Smart Community Service Brand Platforms (SCSBP). However, the impact of digital platform functions on sustainable brand relationships, and the mediating mechanism of customer’s emotional cognition are still unclear. The functional value of digital services in the property service industry focuses on three dimensions, including service efficiency, personalization, and social interaction. Regarding consumers’ emotional cognition aspect, we investigate value consistency and brand image. The empirical analysis findings suggest: (1) the functional value of smart community service has a significant positive impact on consumers’ emotional cognition and is positively related to the construction of sustainable brand relationships; (2) consumers’ emotional cognition of smart community service is positively related to the sustainable brand relationship; (3) consumers’ emotional cognition plays a complete mediating role between service efficiency and sustainable brand relationship, demonstrating a partial mediating role between personalization and social interaction aspects of functional value and sustainable brand relationship. This study contributes to the customer-based sustainable brand relationship theory in the digital service environment and provides a reference for companies to continuously improve the SCSBP and customer-based brand construction

    The Non-Perturbative Quantum Nature of the Dislocation-Phonon Interaction

    Full text link
    Despite the long history of dislocation-phonon interaction studies, there are many problems that have not been fully resolved during this development. These include an incompatibility between a perturbative approach and the long-range nature of a dislocation, the relation between static and dynamic scattering, and the nature of dislocation-phonon resonance. Here by introducing a fully quantized dislocation field, the "dislon"[1], a phonon is renormalized as a quasi-phonon, with shifted quasi-phonon energy, and accompanied by a finite quasi-phonon lifetime that is reducible to classical results. A series of outstanding legacy issues including those above can be directly explained within this unified phonon renormalization approach. In particular, a renormalized phonon naturally resolves the decades-long debate between dynamic and static dislocation-phonon scattering approaches.Comment: 5 pages main text, 3 figures, 10 pages supplemental material

    Focused ultrasound-enhanced delivery of intranasally administered anti-programmed cell death-ligand 1 antibody to an intracranial murine glioma model

    Get PDF
    Immune checkpoint inhibitors have great potential for the treatment of gliomas; however, their therapeutic efficacy has been partially limited by their inability to efficiently cross the blood-brain barrier (BBB). The objective of this study was to evaluate the capability of focused-ultrasound-mediated intranasal brain drug delivery (FUSIN) in achieving the locally enhanced delivery of anti-programmed cell death-ligand 1 antibody (aPD-L1) to the brain. Both non-tumor mice and mice transcranially implanted with GL261 glioma cells at the brainstem were used in this study. aPD-L1 was labeled with a near-infrared fluorescence dye (IRDye 800CW) and administered to mice through the nasal route to the brain, followed by focused ultrasound sonication in the presence of systemically injected microbubbles. FUSIN enhanced the accumulation of aPD-L1 at the FUS-targeted brainstem by an average of 4.03- and 3.74-fold compared with intranasal (IN) administration alone in the non-tumor mice and glioma mice, respectively. Immunohistochemistry staining found that aPD-L1 was mainly located within the perivascular spaces after IN delivery, while FUSIN further enhanced the penetration depth and delivery efficiency of aPD-L1 to the brain parenchyma. The delivered aPD-L1 was found to be colocalized with the tumor cells after FUSIN delivery to the brainstem glioma. These findings suggest that FUSIN is a promising technique to enhance the delivery of immune checkpoint inhibitors to gliomas

    Focused ultrasound for safe and effective release of brain tumor biomarkers into the peripheral circulation

    Get PDF
    The development of noninvasive approaches for brain tumor diagnosis and monitoring continues to be a major medical challenge. Although blood-based liquid biopsy has received considerable attention in various cancers, limited progress has been made for brain tumors, at least partly due to the hindrance of tumor biomarker release into the peripheral circulation by the blood-brain barrier. Focused ultrasound (FUS) combined with microbubbles induced BBB disruption has been established as a promising technique for noninvasive and localized brain drug delivery. Building on this established technique, we propose to develop FUS-enabled liquid biopsy technique (FUS-LBx) to enhance the release of brain tumor biomarkers (e.g., DNA, RNA, and proteins) into the circulation. The objective of this study was to demonstrate that FUS-LBx could sufficiently increase plasma levels of brain tumor biomarkers without causing hemorrhage in the brain. Mice with orthotopic implantation of enhanced green fluorescent protein (eGFP)-transfected murine glioma cells were treated using magnetic resonance (MR)-guided FUS system in the presence of systemically injected microbubbles at three peak negative pressure levels (0.59, 1.29, and 1.58 MPa). Plasma eGFP mRNA levels were quantified with the quantitative polymerase chain reaction (qPCR). Contrast-enhanced MR images were acquired before and after the FUS sonication. FUS at 0.59 MPa resulted in an increased plasma eGFP mRNA level, comparable to those at higher acoustic pressures (1.29 MPa and 1.58 MPa). Microhemorrhage density associated with FUS at 0.59 MPa was significantly lower than that at higher acoustic pressures and not significantly different from the control group. MRI analysis revealed that post-sonication intratumoral and peritumoral hyperenhancement had strong correlations with the level of FUS-induced biomarker release and the extent of hemorrhage. This study suggests that FUS-LBx could be a safe and effective brain-tumor biomarker release technique, and MRI could be used to develop image-guided FUS-LBx

    Blood-brain barrier opening in a large animal model using closed-loop microbubble cavitation-based feedback control of focused ultrasound sonication

    Get PDF
    Focused ultrasound (FUS) in combination with microbubbles has been established as a promising technique for noninvasive and localized Blood-brain barrier (BBB) opening. Real-time passive cavitation detection (PCD)-based feedback control of the FUS sonication is critical to ensure effective BBB opening without causing hemorrhage. This study evaluated the performance of a closed-loop feedback controller in a porcine model. Calibration of the baseline cavitation level was performed for each targeted brain location by a FUS sonication in the presence of intravenously injected microbubbles at a low acoustic pressure without inducing BBB opening. The target cavitation level (TCL) was defined for each target based on the baseline cavitation level. FUS treatment was then performed under real-time PCD-based feedback controller to maintain the cavitation level at the TCL. After FUS treatment, contrast-enhanced MRI and ex vivo histological staining were performed to evaluate the BBB permeability and safety. Safe and effective BBB opening was achieved with the BBB opening volume increased from 3.8 ± 0.7 to 53.6 ± 23.3 m

    Focused ultrasound-enabled brain tumor liquid biopsy

    Get PDF
    Abstract Although blood-based liquid biopsies have emerged as a promising non-invasive method to detect biomarkers in various cancers, limited progress has been made for brain tumors. One major obstacle is the blood-brain barrier (BBB), which hinders efficient passage of tumor biomarkers into the peripheral circulation. The objective of this study was to determine whether FUS in combination with microbubbles can enhance the release of biomarkers from the brain tumor to the blood circulation. Two glioblastoma tumor models (U87 and GL261), developed by intracranial injection of respective enhanced green fluorescent protein (eGFP)-transduced glioblastoma cells, were treated by FUS in the presence of systemically injected microbubbles. Effect of FUS on plasma eGFP mRNA levels was determined using quantitative polymerase chain reaction. eGFP mRNA were only detectable in the FUS-treated U87 mice and undetectable in the untreated U87 mice (maximum cycle number set to 40). This finding was replicated in GL261 mice across three different acoustic pressures. The circulating levels of eGFP mRNA were 1,500–4,800 fold higher in the FUS-treated GL261 mice than that of the untreated mice for the three acoustic pressures. This study demonstrated the feasibility of FUS-enabled brain tumor liquid biopsies in two different murine glioma models across different acoustic pressures

    Incisionless targeted adeno-associated viral vector delivery to the brain by focused ultrasound-mediated intranasal administration

    Get PDF
    BACKGROUND: Adeno-associated viral (AAV) vectors are currently the leading platform for gene therapy with the potential to treat a variety of central nervous system (CNS) diseases. There are numerous methods for delivering AAVs to the CNS, such as direct intracranial injection (DI), intranasal delivery (IN), and intravenous injection with focused ultrasound-induced blood-brain barrier disruption (FUS-BBBD). However, non-invasive and efficient delivery of AAVs to the brain with minimal systemic toxicity remain the major challenge. This study aims to investigate the potential of focused ultrasound-mediated intranasal delivery (FUSIN) in AAV delivery to brain. METHODS: Mice were intranasally administered with AAV5 encoding enhanced green fluorescence protein (AAV5-EGFP) followed by FUS sonication in the presence of systemically injected microbubbles. Mouse brains and other major organs were harvested for immunohistological staining, PCR quantification, and in situ hybridization. The AAV delivery outcomes were compared with those of DI, FUS-BBBD, and IN delivery. FINDINGS: FUSIN achieved safe and efficient delivery of AAV5-EGFP to spatially targeted brain locations, including a superficial brain site (cortex) and a deep brain region (brainstem). FUSIN achieved comparable delivery outcomes as the established DI, and displayed 414.9-fold and 2073.7-fold higher delivery efficiency than FUS-BBBD and IN. FUSIN was associated with minimal biodistribution in peripheral organs, which was comparable to that of DI. INTERPRETATION: Our results suggest that FUSIN is a promising technique for non-invasive, efficient, safe, and spatially targeted AAV delivery to the brain. FUNDING: National Institutes of Health (NIH) grants R01EB027223, R01EB030102, R01MH116981, and UG3MH126861

    Enhanced Oxidative Stress Is Responsible for TRPV4-Induced Neurotoxicity

    Get PDF
    Transient receptor potential vanilloid 4 (TRPV4) has been reported to be responsible for neuronal injury in pathological conditions. Excessive oxidative stress can lead to neuronal damage, and activation of TRPV4 increases the production of reactive oxygen species and nitric oxide (NO) in many types of cells. The present study explored whether TRPV4-induced neuronal injury is mediated through enhancing oxidative stress. We found that intracerebroventricular injection of the TRPV4 agonist GSK1016790A increased the content of methane dicarboxylic aldehyde (MDA) and NO in the hippocampus, which was blocked by administration of the TRPV4 specific antagonist HC-067047. The activities of catalase (CAT) and glutathione peroxidase (GSH-Px) were decreased by GSK1016790A, whereas the activity of superoxide dismutase remained unchanged. Moreover, the protein level and activity of neuronal nitric oxide synthase (nNOS) were increased by GSK1016790A, and the GSK1016790A-induced increase in NO content was blocked by an nNOS specific antagonist ARL-17477. The GSK1016790A-induced modulations of CAT, GSH-Px and nNOS activities and the protein level of nNOS were significantly inhibited by HC-067047. Finally, GSK1016790A-induced neuronal death and apoptosis in the hippocampal CA1 area were markedly attenuated by administration of a reactive oxygen species scavenger Trolox or ARL-17477. We conclude that activation of TRPV4 enhances oxidative stress by inhibiting CAT and GSH-Px and increasing nNOS, which is responsible, at least in part, for TRPV4-induced neurotoxicity

    Focused ultrasound-mediated delivery of anti-programmed cell death-ligand 1 antibody to the brain of a porcine model

    Get PDF
    Immune checkpoint inhibitor (ICI) therapy has revolutionized cancer treatment by leveraging the body\u27s immune system to combat cancer cells. However, its effectiveness in brain cancer is hindered by the blood-brain barrier (BBB), impeding the delivery of ICIs to brain tumor cells. This study aimed to assess the safety and feasibility of using focused ultrasound combined with microbubble-mediated BBB opening (FUS-BBBO) to facilitate trans-BBB delivery of an ICI, anti-programmed cell death-ligand 1 antibody (aPD-L1) to the brain of a large animal model. In a porcine model, FUS sonication of targeted brain regions was performed after intravenous microbubble injection, which was followed by intravenous administration of aPD-L1 labeled with a near-infrared fluorescent dye. The permeability of the BBB was evaluated using contrast-enhanced MRI in vivo, while fluorescence imaging and histological analysis were conducted on ex vivo pig brains. Results showed a significant 4.8-fold increase in MRI contrast-enhancement volume in FUS-targeted regions compared to nontargeted regions. FUS sonication enhanced aPD-L1 delivery by an average of 2.1-fold, according to fluorescence imaging. In vivo MRI and ex vivo staining revealed that the procedure did not cause significant acute tissue damage. These findings demonstrate that FUS-BBBO offers a noninvasive, localized, and safe delivery approach for ICI delivery in a large animal model, showcasing its potential for clinical translation
    • …
    corecore