10 research outputs found

    Flotation Separation of Chalcopyrite and Molybdenite Assisted by Microencapsulation Using Ferrous and Phosphate Ions: Part I. Selective Coating Formation

    No full text
    Porphyry Cu-Mo deposits, which are the most important sources of copper and molybdenum, are typically processed by flotation. In order to separate Cu and Mo minerals (mostly chalcopyrite and molybdenite), the strategy of depressing chalcopyrite while floating molybdenite has been widely adopted by using chalcopyrite depressants, such as NaHS, Na2S, and Nokes reagent. However, these depressants are potentially toxic due to their possibility to emit H2S gas. Thus, this study aims at developing a new concept for selectively depressing chalcopyrite via microencapsulation while using Fe2+ and PO43- forming (FePO4)-P-(III) coating. The cyclic voltammetry results indicated that Fe2+ can be oxidized to Fe3+ on the chalcopyrite surface, but not on the molybdenite surface, which arises from their different electrical properties. As a result of microencapsulation treatment using 1 mmol/L Fe2+ and 1 mmol/L PO43-, chalcopyrite was much more coated with FePO4 than molybdenite, which indicated that selective depression of chalcopyrite by the microencapsulation technique is highly achievable

    Wearable Device Control Platform Technology for Network Application Development

    No full text
    Application development platform is the most important environment in IT industry. There are a variety of platforms. Although the native development enables application to optimize, various languages and software development kits need to be acquired according to the device. The coexistence of smart devices and platforms has rendered the native development approach time and cost consuming. Cross-platform development emerged as a response to these issues. These platforms generate applications for multiple devices based on web languages. Nevertheless, development requires additional implementation based on a native language because of the coverage and functions of supported application programming interfaces (APIs). Wearable devices have recently attracted considerable attention. These devices only support Bluetooth-based interdevice communication, thereby making communication and device control impossible beyond a certain range. We propose Network Application Agent (NetApp-Agent) in order to overcome issues. NetApp-Agent based on the Cordova is a wearable device control platform for the development of network applications, controls input/output functions of smartphones and wearable/IoT through the Cordova and Native API, and enables device control and information exchange by external users by offering a self-defined API. We confirmed the efficiency of the proposed platform through experiments and a qualitative assessment of its implementation

    Flotation Separation of Chalcopyrite and Molybdenite Assisted by Microencapsulation Using Ferrous and Phosphate Ions: Part II. Flotation

    No full text
    Porphyry-type deposits are the major sources of copper and molybdenum, and flotation has been adopted to recover them separately. The conventional reagents used for depressing copper minerals, such as NaHS, Na2S, and Nokes reagent, have the potential to emit toxic H2S gas when pulp pH was not properly controlled. Thus, in this study the applicability of microencapsulation (ME) using ferrous and phosphate ions as an alternative process to depress the floatability of chalcopyrite was investigated. During ME treatment, the use of high concentrations of ferrous and phosphate ions together with air introduction increased the amount of FePO4 coating formed on the chalcopyrite surface, which was proportional to the degree of depression of its floatability. Although ME treatment also reduced the floatability of molybdenite, similar to 92% Mo could be recovered by utilizing emulsified kerosene. Flotation of chalcopyrite/molybdenite mixture confirmed that the separation efficiency was greatly improved from 10.9% to 66.8% by employing ME treatment as a conditioning process for Cu-Mo flotation separation

    Harmine Inhibits Multiple TLR-Induced Inflammatory Expression through Modulation of NF-κB p65, JNK, and STAT1

    No full text
    Harmine is a beta-carboline alkaloid present in various plants, including in the seeds of Peganum harmala L. This study aimed to investigate the anti-inflammatory activity and mechanism of harmine using macrophages stimulated with various toll-like receptor (TLR) agonists and a model of endotoxemia. The expression of inflammatory mediators induced by ligands of TLRs 2, 3, 4, and 9 were examined in thioglycollate-elicited peritoneal macrophages isolated from BALB/c and C57BL/6 mouse strains. Further, the activation of NF-κB, MAPK, AP-1, and STAT1 was explored using lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (poly(I:C)). Finally, the liver inflammatory response during endotoxemia was examined. Harmine inhibited inducible nitric oxide synthase, cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-12, and other markers induced by various TLR agonists. The inhibition of NF-κB activity by harmine occurred via the modulation of p65 phosphorylation, independent of IκBα degradation. The inhibition of AP-1 activity by harmine was associated with the modulation of JNK. Harmine inhibited the LPS-induced serine and tyrosine phosphorylation of STAT1, but only affected serine phosphorylation by poly(I:C) treatment. In vivo, harmine inhibited iNOS and COX-2 expression during endotoxemia. Collectively, the results show that harmine can be effective against infectious inflammation through modulation of NF-κB, JNK, and STAT1

    Macrophages from Mice Administered <i>Rhus verniciflua</i> Stokes Extract Show Selective Anti-Inflammatory Activity

    No full text
    The bark of Rhus verniciflua Stokes (RVS) is used as a food additive and herbal medicine for various inflammatory disorders and cancer in Eastern Asia. RVS has been shown to exert anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated macrophages in vitro, but whether oral administration of RVS affects the inflammatory response of macrophage needs to be verified. RVS was given orally to mice for ten days. For isolation of macrophages, intraperitoneal injection of thioglycollate was performed. For determination of serum inflammatory response, intraperitoneal injection of LPS was applied. RVS stimulated monocyte differentiation in thioglycollate-induced peritonitis by increasing the population of cells expressing CD11b and class A scavenger receptors. These monocyte-derived macrophages showed an increased uptake of acetylated low-density lipoprotein. When peritoneal macrophages from the RVS group were stimulated with LPS, the levels of tumor necrosis factor (TNF)-&#945; and interleukin (IL)-6 in the supernatant decreased, but the level of IL-12 increased. The surface expression of CD86 was reduced, but surface expression of class II major histocompatibility complex molecules was increased. RVS suppressed the serum levels of LPS-induced TNF-&#945; and IL-6. Collectively, RVS promoted monocyte differentiation upon inflammatory insults and conferred selective anti-inflammatory activity without causing overall inhibitory effects on immune cells
    corecore