22 research outputs found
Developments in the method of finite spheres : efficiency and coupling to the traditional finite element method
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2004.Includes bibliographical references (p. 179-183).In this thesis we develop some advances in the method of finite spheres which is a truly meshless numerical technique for the solution of boundary value problems on geometrically complex domains. We present the development of a preprocessor for the auto-generation of finite spheres on two-dimensional computational domains. The techniques enable to determine the radii of the spheres as well as to detect the boundary of the analysis domain. The numerical integration for the calculation of stiffness matrices is expensive. However, by utilizing the compact support characteristic it is possible to transform the integral equations into more efficient expressions. The improved equations reduce the effort of integration because for most terms, only line integrations are used. We also propose a new coupling scheme to couple finite element discretizations with finite spheres. The idea is that we can use finite elements and finite spheres simultaneously to utilize their mutual advantages. Hence, we can employ finite spheres only in areas where their use is efficient. In addition, we propose an enriching scheme which makes it possible to superpose spheres on conventional finite element topologies to reach a higher order of convergence in the numerical solution of problems.by Jung-Wuk Hong.Ph.D
Coarsening model of cavity nucleation and thin film delamination from single-crystal BaTiO3 with proton implantation
The layer splitting mechanism of a proton implanted single crystal ferroelectric BaTiO3 thin film layer from its bulk BaTiO3 substrate has been investigated. The single crystal BaTiO3 thin film layer splits as the hydrogen gas diffuses and the internal cavity pressure increases. Ripening mechanism driven by the pressurized hydrogen in the implantation-induced damage zone makes coarsening of the cavities and causes the delamination of the thin layer during the annealing. A unique criterion relation of blister nucleation and evolution has been derived and a simplified debonding criterion is proposed in terms of dimensionless parameters based on the force equilibrium condition. A numerical simulation of two-bubble evolution and delamination of thin film is performed using a finite element method
Long-term efficacy, safety and immunogenicity in patients with rheumatoid arthritis continuing on an etanercept biosimilar (LBEC0101) or switching from reference etanercept to LBEC0101: an open-label extension of a phase III multicentre, randomised, double-blind, parallel-group study
Background
To evaluate the long-term efficacy, safety and immunogenicity of continuing LBEC0101; the etanercept (ETN) biosimilar; or switching from the ETN reference product (RP) to LBEC0101 in patients with rheumatoid arthritis (RA).
Methods
This multicentre, single-arm, open-label extension study enrolled patients who had completed a 52-week randomised, double-blind, parallel phase III trial of LBEC0101 vs ETN-RP. Patients treated with ETN-RP during the randomised controlled trial switched to LBEC0101; those treated with LBEC0101 continued to receive LBEC0101 in this study. LBEC0101 (50 mg) was administered subcutaneously once per week for 48 weeks with a stable dose of methotrexate. Efficacy, safety and immunogenicity of LBEC0101 were assessed up to week 100.
Results
A total of 148 patients entered this extension study (70 in the maintenance group and 78 in the switch group). The 28-joint disease activity scores (DAS28)-erythrocyte sedimentation rate (ESR) were maintained in both groups from week 52 to week 100 (from 3.068 to 3.103 in the maintenance group vs. from 3.161 to 3.079 in the switch group). ACR response rates at week 100 for the maintenance vs. switch groups were 79.7% vs. 83.3% for ACR20, 65.2% vs. 66.7% for ACR50 and 44.9% vs. 42.3% for ACR70. The incidence of adverse events and the proportion of patients with newly developed antidrug antibodies were similar in the maintenance and switch groups (70.0% and 70.5%, 1.4% and 1.3%, respectively).
Conclusions
Administration of LBEC0101 showed sustained efficacy and acceptable safety in patients with RA after continued therapy or after switching from ETN-RP to LBEC0101.
Trial registration
ClinicalTrials.gov, NCT02715908. Registered 22 March 2016.This extension study was funded by LG Chem, Ltd. (formerly, LG Life Sciences, Ltd), Mochida Pharmaceutical Co., Ltd. and Korea Health Industry Development Institute
Influence of Zinc Content on the Mechanical Behaviors of Cu-Zn Alloys by Molecular Dynamics
The mechanical properties of copper alloys containing various ratios of zinc are evaluated using molecular dynamics (MD) simulations to determine the impact of the different zinc concentrations. The modified embedded atom method (MEAM) parameters for copper were established in the 1990s; however, the MEAM potential parameters for zinc, with an axial ratio >1, were recently proposed. In this research, the MD models of the copper alloys with various zinc contents are constructed using the MEAM potential parameters for zinc. Tensile test simulations are also conducted. The strain rate effects of the alloys are evaluated at four different strain rates, and the variations in the tensile strengths and Young’s modulus are investigated. The proposed procedures have significant potential applicability for simulating a variety of zinc-containing alloys
On the reliable solution of contact problems in engineering design
In this paper we examine briefly the reliability of solution needed for the accurate and effective analysis of engineering design problems involving contact conditions. A general finite element formulation for treating the frictional contact problem using constraint functions is first summarized. Then we address general reliability issues and those related to the selection of appropriate elements that provide optimal performance. These elements of course do not lock and would provide the best solution an analyst can expect when simulating a design problem. Reliability issues specific to the contact formulation are also presented. A promising procedure to increase the reliability of an analysis is the method of finite spheres. The method does not require a mesh and in particular can be used with a finite element discretization as described in the paper. Finally, the results of several illustrative analysis problems are given
Effective numerical approach to assess low-cycle fatigue behavior of pipe elbows
We developed numerical models to efficiently simulate the low-cycle fatigue behavior of a pipe elbow. To verify the model, in-plane cyclic bending tests of pipe elbow specimens were conducted, and a through crack occurred in the vicinity of the crown. Numerical models based on the erosion method and tie-break method are developed, and the numerical results are compared with experimental results. The calculated results of both models are in good agreement with experimental results, and the model using the tie-break method possesses two times faster calculation speed. Therefore, the numerical model based on the tie-break method would be beneficial to evaluate the strength of piping systems under seismic loadings. Keywords: Finite Element Method, Fracture, Low-cycle Fatigue, Pipe Elbo