149 research outputs found

    Anomalous Viscosity of the Quark-Gluon Plasma

    Full text link
    The shear viscosity of the quark-gluon plasma is predicted to be lower than the collisional viscosity for weak coupling. The estimated ratio of the shear viscosity to entropy density is rather close to the ratio calculated by N = 4 super Yang-Mills theory for strong coupling, which indicates that the quark-gluon plasma might be strongly coupled. However, in presence of momentum anisotropy, the Weibel instability can arise and drive the turbulent transport. Shear viscosity can be lowered by enhanced collisionality due to turbulence, but the decorrelation time and its relation to underlying dynamics and color-magnetic fields have not been calculated self-consistently. In this paper, we use resonance broadening theory for strong turbulence to calculate the anomalous viscosity of the quark-gluon plasma for nonequilibrium. For saturated Weibel instability, we estimate the scalings of the decorrelation rate and viscosity and compare these with collisional transport. This calculation yields an explicit connection between the underlying momentum space anisotropy and the viscosity anomaly.Comment: 16 pages, 2 figure

    Neutron Removal from the Deformed Halo 31Ne Nucleus

    Get PDF
    Experimental data on Coulomb breakup and neutron removal indicate that 31Ne is one of the heaviest halo nuclei discovered so far. The possible ground state of 31Ne is either 3/2- coming from p-wave halo or 1/2+ from s-wave halo. In this work, we develop a treatable model to include deformed wave functions and a dynamical knockout formalism which includes the dependence on the nuclear orientation to study the neutron removal from 31Ne projectiles at energies around E=200 MeV/nucleon. A detailed account of the effects of deformation on cross sections and longitudinal momentum distributions is made. Our numerical analysis indicates a preference for the 31Ne ground state with spin parity 3/2-.Comment: 22 pages, 13 figures, accepted for publication in the Physical Review

    The Wake of a Heavy Quark in Non-Abelian Plasmas : Comparing Kinetic Theory and the AdS/CFT Correspondence

    Full text link
    We compute the non-equilibrium stress tensor induced by a heavy quark moving through weakly coupled QCD plasma at the speed of light and compare the result to N = 4 Super Yang Mills theory at strong coupling. The QCD Boltzmann equation is reformulated as a Fokker-Planck equation in a leading log approximation which is used to compute the induced stress. The transition from nonequilibrium at short distances to equilibrium at large distances is analyzed with first and second order hydrodynamics. Even after accounting for the obvious differences in shear lengths, the strongly coupled theory is significantly better described by hydrodynamics at sub-asymptotic distances. We argue that this difference between the kinetic and AdS/CFT theories is related to the second order hydrodynamic coefficient Ï„Ï€\tau_\pi. Ï„Ï€\tau_\pi is numerically large in units of the shear length for theories based on the Boltzmann equation.Comment: 31 pages, 8 figure

    Spectral densities for hot QCD plasmas in a leading log approximation

    Full text link
    We compute the spectral densities of TμνT^{\mu\nu} and JμJ^{\mu} in high temperature QCD plasmas at small frequency and momentum,\, ω,k∼g4T\omega,k \sim g^4 T. The leading log Boltzmann equation is reformulated as a Fokker Planck equation with non-trivial boundary conditions, and the resulting partial differential equation is solved numerically in momentum space. The spectral densities of the current, shear, sound, and bulk channels exhibit a smooth transition from free streaming quasi-particles to ideal hydrodynamics. This transition is analyzed with conformal and non-conformal second order hydrodynamics, and a second order diffusion equation. We determine all of the second order transport coefficients which characterize the linear response in the hydrodynamic regime.Comment: 39 pages, 6 figures. v3 contains an analysis of the bulk channel with non-conformal hydrodynamics. Otherwise no significant change
    • …
    corecore