293 research outputs found

    Nonlinear autopilot design for endo- and exo-atmospheric interceptor with thrust-vector-control

    Get PDF
    This paper proposes an autopilot design for an interceptor with Thrust-Vector-Control (TVC) that operates in the endo- and exo-atmospheric regions. The main objective of the proposed autopilot design is to ensure control performance in both atmospheric regions, without changing the control mechanism. In this paper, the characteristics of the aerodynamic forces in both atmospheric regions are first investigated to examine the issue of the conventional control mechanism at various altitudes. And then, a control mechanism, which can be applied to both atmospheric regions, is determined based on the analysis results. An autopilot design is then followed by utilizing the control mechanism and the feedback linearization control (FBLC) method. Accordingly, the proposed autopilot does not rely on changing the control mechanism depending on flight condition unlike the conventional approach as well as it can adjust the control gains automatically according to the changes of flight operating conditions. In this paper, the robustness of the proposed autopilot is investigated through the tracking error analysis and the relative stability analysis in the presence of model uncertainties. The physical meaning of the proposed autopilot is also presented by comparing to the well-known three-loop control structure. Finally, numerical simulations are performed to show the performance of the proposed method

    A design of a short course with COTS UAV system for higher education students

    Get PDF
    This paper aims to propose a short course with a commercial off the shelf unmanned aerial vehicle (COTS UAV) system. From the short course, students can have a conception of a UAV system, and they would have not only the knowledge about the hardware integration but also the theoretical background of the guidance, navigation, and control (GNC) and the situation awareness system. The proposed course consists of two parts; the GNC system for holding the position and the situation awareness system with the marker detection and tracking. A Pixhawk is selected for a flight controller with an open source autopilot, i.e. px 4, and a Raspberry Pi with a downward camera is utilised for the visual navigation of the situation awareness system. The Pixhawk and Raspberry Pi are integrated into the robot operating system (ROS) via the WIFI network, and the MAVROS is adopted for the communication between the Pixhawk and the Raspberry Pi. The first part of the course is designed as the hands-on based lectures, and the second part of the course is adopted the problem-based project

    Study on parasite effect with strapdown seeker in consideration of time delay

    Get PDF

    Target Detection, Tracking and Avoidance System for Low-cost UAVs using AI-Based Approaches

    Full text link
    An onboard target detection, tracking and avoidance system has been developed in this paper, for low-cost UAV flight controllers using AI-Based approaches. The aim of the proposed system is that an ally UAV can either avoid or track an unexpected enemy UAV with a net to protect itself. In this point of view, a simple and robust target detection, tracking and avoidance system is designed. Two open-source tools were used for the aim: a state-of-the-art object detection technique called SSD and an API for MAVLink compatible systems called MAVSDK. The MAVSDK performs velocity control when a UAV is detected so that the manoeuvre is done simply and efficiently. The proposed system was verified with Software in the loop (SITL) and Hardware in the loop (HITL) simulators. The simplicity of this algorithm makes it innovative, and therefore it should be used in future applications needing robust performances with low-cost hardware such as delivery drone applications.Comment: IEEE RED-UAS 2019 Conferenc

    Satellite cell-specific ablation of Cdon impairs integrin activation, FGF signalling, and muscle regeneration

    Get PDF
    Background: Perturbation in cell adhesion and growth factor signalling in satellite cells results in decreased muscle regenerative capacity. Cdon (also called Cdo) is a component of cell adhesion complexes implicated in myogenic differentiation, but its role in muscle regeneration remains to be determined. Methods: We generated inducible satellite cell-specific Cdon ablation in mice by utilizing a conditional Cdon allele and Pax7 CreERT2. To induce Cdon ablation, mice were intraperitoneally injected with tamoxifen (tmx). Using cardiotoxin-induced muscle injury, the effect of Cdon depletion on satellite cell function was examined by histochemistry, immunostaining, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. Isolated myofibers or myoblasts were utilized to determine stem cell function and senescence. To determine pathways related to Cdon deletion, injured muscles were subjected to RNA sequencing analysis. Results: Satellite cell-specific Cdon ablation causes impaired muscle regeneration with fibrosis, likely attributable to decreased proliferation, and senescence, of satellite cells. Cultured Cdon-depleted myofibers exhibited 32 ± 9.6% of EdU-positive satellite cells compared with 58 ± 4.4% satellite cells in control myofibers (P < 0.05). About 32.5 ± 3.7% Cdon-ablated myoblasts were positive for senescence-associated β-galactosidase (SA-β-gal) while only 3.6 ± 0.5% of control satellite cells were positive (P < 0.001). Transcriptome analysis of muscles at post-injury Day 4 revealed alterations in genes related to mitogen-activated protein kinase signalling (P < 8.29 e−5) and extracellular matrix (P < 2.65 e−24). Consistent with this, Cdon-depleted tibialis anterior muscles had reduced phosphorylated extracellular signal-regulated kinase (p-ERK) protein levels and expression of ERK targets, such as Fos (0.23-fold) and Egr1 (0.31-fold), relative to mock-treated control muscles (P < 0.001). Cdon-depleted myoblasts exhibited impaired ERK activation in response to basic fibroblast growth factor. Cdon ablation resulted in decreased and/or mislocalized integrin β1 activation in satellite cells (weak or mislocalized integrin1 in tmx = 38.7 ± 1.9%, mock = 21.5 ± 6%, P < 0.05), previously linked with reduced fibroblast growth factor (FGF) responsiveness in aged satellite cells. In mechanistic studies, Cdon interacted with and regulated cell surface localization of FGFR1 and FGFR4, likely contributing to FGF responsiveness of satellite cells. Satellite cells from a progeria model, Zmpste24−/− myofibers, showed decreased Cdon levels (Cdon-positive cells in Zmpste24−/− = 63.3 ± 11%, wild type = 90 ± 7.7%, P < 0.05) and integrin β1 activation (weak or mislocalized integrin β1 in Zmpste24−/− = 64 ± 6.9%, wild type = 17.4 ± 5.9%, P < 0.01). Conclusions: Cdon deficiency in satellite cells causes impaired proliferation of satellite cells and muscle regeneration via aberrant integrin and FGFR signalling. © 2020 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of Society on Sarcopenia, Cachexia and Wasting Disorders1

    Polymeric tandem organic light-emitting diodes using a self-organized interfacial layer

    Get PDF
    The authors have demonstrated efficient polymeric tandem organic light-emitting diodes (OLEDs) with a self-organized interfacial layer, which was formed by differences in chemical surface energy. Hydrophilic poly(styrene sulfonate)-doped poly(3,4-ethylene dioxythiophene) (PEDOT:PSS) was spin coated onto the hydrophobic poly(9,9-dyoctilfluorene) (PFO) surface and a PEDOT:PSS bubble or dome was built as an interfacial layer. The barrier heights of PEDOT:PSS and PFO in the two-unit tandem OLED induced a charge accumulation at the interface in the heterojunction and thereby created exciton recombination at a much higher level than in the one-unit reference. This effect was confirmed in both the hole only and the electron only devices. (c) 2008 American Institute of Physicsopen8

    Usefulness of the procalcitonin test in young febrile infants between 1 and 3 months of age

    No full text
    Purpose To study the usefulness of the procalcitonin (PCT) test in young febrile infants between 1 and 3 months of age. Methods We evaluated the medical records of 336 febrile infants between 1 and 3 months of age who visited the Emergency Department or outpatient department of Samsung Changwon Hospital from May 2015 to February 2017, and analyzed the clinical characteristics between infants in the serious bacterial infection (SBI) group and non-SBI group. Results Among the 336 infants, 38 (11.3%) had definitive SBI (bacteremia, n=3; meningitis, n=1; urinary tract infection, n=34). The mean PCT (6.4±11.9 ng/mL) and C-reactive protein (CRP) level (3.8±2.6 mg/dL), and the absolute neutrophil count (ANC) (6,984±4,675) for patients in the SBI group were significantly higher than those for patients in the non-SBI group (PCT, 0.3±1.2 ng/mL; CRP, 1.3±1.6 mg/dL; ANC, 4,888±3,661). PCT had lower sensitivity (43.6%), but higher specificity (92.6%) and accuracy (86.9%) than CRP (92.3%, 25.3%, and 33.0%) for identifying SBI. The area under the receiver operating characteristic curves (AUCs) for definitive SBI were PCT 77.0%, CRP 80.8%, WBC 56.8%, ANC 67.8%, and PLT 48.1%. The AUCs for definitive SBI were PCT+CRP 85.4%, PCT+WBC 77.2%, PCT+ANC 81.3%, CRP+WBC 80.1%, and CRP+ANC 81.6%. Conclusion Our results suggest that the PCT test or a combination of PCT and CRP tests is a more accurate and specific biomarker to detect and rule out SBIs

    Three-Dimensional Human Alveolar Stem Cell Culture Models Reveal Infection Response to SARS-CoV-2.

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the cause of a present pandemic, infects human lung alveolar type 2 (hAT2) cells. Characterizing pathogenesis is crucial for developing vaccines and therapeutics. However, the lack of models mirroring the cellular physiology and pathology of hAT2 cells limits the study. Here, we develop a feeder-free, long-term, three-dimensional (3D) culture technique for hAT2 cells derived from primary human lung tissue and investigate infection response to SARS-CoV-2. By imaging-based analysis and single-cell transcriptome profiling, we reveal rapid viral replication and the increased expression of interferon-associated genes and proinflammatory genes in infected hAT2 cells, indicating a robust endogenous innate immune response. Further tracing of viral mutations acquired during transmission identifies full infection of individual cells effectively from a single viral entry. Our study provides deep insights into the pathogenesis of SARS-CoV-2 and the application of defined 3D hAT2 cultures as models for respiratory diseases
    corecore