362 research outputs found

    A developmental transition in definitive erythropoiesis: erythropoietin expression is sequentially regulated by retinoic acid receptors and HNF4

    Get PDF
    The cytokine erythropoietin (Epo) promotes erythropoietic progenitor cell proliferation and is required for erythropoietic differentiation. We have found that the Epo gene is a direct transcriptional target gene of retinoic acid signaling during early erythropoiesis (prior to embryonic day E12.5) in the fetal liver. Mouse embryos lacking the retinoic acid receptor gene RXRα have a morphological and histological phenotype that is comparable with embryos in which the Epo gene itself has been mutated, and flow cytometric analysis indicates that RXRα-deficient embryos are deficient in erythroid differentiation. Epo mRNA levels are reduced substantially in the fetal livers of RXRα ^(−/−)embryos at E10.25 and E11.25, and genetic analysis shows that theRXRα and Epo genes are coupled in the same pathway. We furthermore show that the Epo gene is retinoic acid inducible in embryos, and that the Epo gene enhancer contains a DR2 sequence that represents a retinoic acid receptor-binding site and a retinoic acid receptor transcriptional response element. However, unlike Epo-deficient embryos that die from anemia, the erythropoietic deficiency in RXRα ^(−/−) embryos is transient; Epo mRNA is expressed at normal levels by E12.5, and erythropoiesis and liver morphology are normal by E14.5. We show that HNF4, like RXRα a member of the nuclear receptor family, is abundantly expressed in fetal liver hepatocytes, and is competitive with retinoic acid receptors for occupancy of the Epo gene enhancer DR2 element. We propose that Epo expression is regulated during the E9.5–E11.5 phase of fetal liver erythropoiesis by RXRα and retinoic acid, and that expression then becomes dominated by HNF_4 activity from E11.5 onward. This transition may be responsible for switching regulation of Epo expression from retinoic acid control to hypoxic control, as is found throughout the remainder of life

    Effect of Extending the Original CROSS Criteria on Tumor Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer Patients:A National Multicenter Cohort Analysis

    Get PDF
    BACKGROUND: Extending the original criteria of the Chemoradiotherapy for Oesophageal Cancer followed by Surgery Study (CROSS) in daily practice may increase the treatment outcome of esophageal cancer (EC) patients. This retrospective national cohort study assessed the impact on the pathologic complete response (pCR) rate and surgical outcome. PATIENTS AND METHODS: Data from EC patients treated between 2009 and 2017 were collected from the national Dutch Upper Gastrointestinal Cancer Audit database. Patients had locally advanced EC (cT1/N+ or cT2-4a/N0-3/M0) and were treated according to the CROSS regimen. CROSS (n = 1942) and the extended CROSS (e-CROSS; n = 1359) represent patients fulfilling the original or extended CROSS criteria, respectively. The primary outcome was total pCR (ypT0N0), while secondary outcomes were local esophageal pCR (ypT0), surgical radicality, and postoperative morbidity and mortality. RESULTS: Overall, CROSS and e-CROSS did not differ in total or local pCR rate, although a trend was observed (23.2% vs. 20.4%, p = 0.052; and 26.7% vs. 23.8%, p = 0.061). When stratifying by histology, the pCR rate was higher in the CROSS group compared with e-CROSS in squamous cell carcinomas (48.2% vs. 33.3%, p = 0.000) but not in adenocarcinomas (16.8% vs. 16.9%, p = 0.908). Surgical radicality did not differ between groups. Postoperative mortality (3.2% vs. 4.6%, p = 0.037) and morbidity (58.3% vs. 61.8%, p = 0.048) were higher in e-CROSS. CONCLUSION: Extending the CROSS inclusion criteria for neoadjuvant chemoradiotherapy in routine clinical practice of EC patients had no impact on the pCR rate and on radicality, but was associated with increased postoperative mortality and morbidity. Importantly, effects differed between histological subtypes. Hence, in future studies, we should carefully reconsider who will benefit most in the real-world setting

    Fetal cortical plate segmentation using fully convolutional networks with multiple plane aggregation

    Get PDF
    Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding of human brain development by providing quantitative information of cortical plate (CP) developmen

    Spinodal Decomposition in a Binary Polymer Mixture: Dynamic Self Consistent Field Theory and Monte Carlo Simulations

    Full text link
    We investigate how the dynamics of a single chain influences the kinetics of early stage phase separation in a symmetric binary polymer mixture. We consider quenches from the disordered phase into the region of spinodal instability. On a mean field level we approach this problem with two methods: a dynamical extension of the self consistent field theory for Gaussian chains, with the density variables evolving in time, and the method of the external potential dynamics where the effective external fields are propagated in time. Different wave vector dependencies of the kinetic coefficient are taken into account. These early stages of spinodal decomposition are also studied through Monte Carlo simulations employing the bond fluctuation model that maps the chains -- in our case with 64 effective segments -- on a coarse grained lattice. The results obtained through self consistent field calculations and Monte Carlo simulations can be compared because the time, length, and temperature scales are mapped onto each other through the diffusion constant, the chain extension, and the energy of mixing. The quantitative comparison of the relaxation rate of the global structure factor shows that a kinetic coefficient according to the Rouse model gives a much better agreement than a local, i.e. wave vector independent, kinetic factor. Including fluctuations in the self consistent field calculations leads to a shorter time span of spinodal behaviour and a reduction of the relaxation rate for smaller wave vectors and prevents the relaxation rate from becoming negative for larger values of the wave vector. This is also in agreement with the simulation results.Comment: Phys.Rev.E in prin

    Optimal method for fetal brain age prediction using multiplanar slices from structural magnetic resonance imaging

    Get PDF
    The accurate prediction of fetal brain age using magnetic resonance imaging (MRI) may contribute to the identification of brain abnormalities and the risk of adverse developmental outcomes. This study aimed to propose a method for predicting fetal brain age using MRIs from 220 healthy fetuses between 15.9 and 38.7 weeks of gestational age (GA). We built a 2D single-channel convolutional neural network (CNN) with multiplanar MRI slices in different orthogonal planes without correction for interslice motion. In each fetus, multiple age predictions from different slices were generated, and the brain age was obtained using the mode that determined the most frequent value among the multiple predictions from the 2D single-channel CNN. We obtained a mean absolute error (MAE) of 0.125 weeks (0.875 days) between the GA and brain age across the fetuses. The use of multiplanar slices achieved significantly lower prediction error and its variance than the use of a single slice and a single MRI stack. Our 2D single-channel CNN with multiplanar slices yielded a significantly lower stack-wise MAE (0.304 weeks) than the 2D multi-channel (MAE = 0.979

    A Novel Role for GADD45\u3ci\u3eβ\u3c/i\u3e as a Mediator of \u3ci\u3eMMP-13\u3c/i\u3e Gene Expression during Chondrocyte Terminal Differentiation

    Get PDF
    The growth arrest and DNA damage-inducible 45β (GADD45β) gene product has been implicated in the stress response, cell cycle arrest, and apoptosis. Here we demonstrated the unexpected expression of GADD45β in the embryonic growth plate and uncovered its novel role as an essential mediator of matrix metalloproteinase-13 (MMP-13) expression during terminal chondrocyte differentiation. We identified GADD45β as a prominent early response gene induced by bone morphogenetic protein-2 (BMP-2) through a Smad1/Runx2-dependent pathway. Because this pathway is involved in skeletal development, we examined mouse embryonic growth plates, and we observed expression of Gadd45β mRNA coincident with Runx2 protein in prehypertrophic chondrocytes, whereas GADD45β protein was localized prominently in the nucleus in late stage hypertrophic chondrocytes where Mmp-13 mRNA was expressed. In Gadd45β−/− mouse embryos, defective mineralization and decreased bone growth accompanied deficient Mmp-13 and Col10a1 gene expression in the hypertrophic zone. Transduction of small interferin

    Influence of Calendar Period on the Association Between BMI and Coronary Heart Disease: A Meta-Analysis of 31 Cohorts

    Get PDF
    Objective: The association between obesity and coronary heart disease (CHD) may have changed over time, for example due to improved pharmacological treatment of CHD risk factors. This meta-analysis of 31 prospective cohort studies explores the influence of calendar period on CHD risk associated with body mass index (BMI). Design and Methods: The relative risks (RRs) of CHD for a five-BMI-unit increment and BMI categories were pooled by means of random effects models. Meta-regression analysis was used to examine the influence of calendar period (>1985 v 1985) in univariate and multivariate analyses (including mean population age as a covariate). Results: The age, sex, and smoking adjusted RR (95% confidence intervals) of CHD for a five-BMI-unit increment was 1.28(1.22:1.34). For underweight, overweight and obesity, the RRs (compared to normal weight) were 1.11(0.91:1.36), 1.31(1.22:1.41), and 1.78(1.55:2.04), respectively. The univariate analysis indicated 31% (95%CI: 56:0) lower RR of CHD associated with a five-BMI-unit increment and a 51% (95%CI: 78: 14)) lower RR associated with obesity in studies starting after 1985 (n ¼ 15 and 10, respectively) compared to studies starting in or before 1985 (n ¼ 16 and 10). However, in the multivariate analysis, only mean population age was independently associated with the RRs for a five-BMI-unit increment and obesity ( 29(95%CI: 55: 5)) and 31(95%CI: 66:3), respectively) per 10-year increment in mean age). Conclusion: This study provides no consistent evidence for a difference in the association between BMI and CHD by calendar period. The mean population age seems to be the most important factor that modifies the association between the risk of CHD and BMI, in which the RR decreases with increasing age

    Reactivity of Biarylazacyclooctynones in Copper-Free Click Chemistry

    Get PDF
    The 1,3-dipolar cycloaddition of cyclooctynes with azides, also called "copper-free click chemistry", is a bioorthogonal reaction with widespread applications in biological discovery. The kinetics of this reaction are of paramount importance for studies of dynamic processes, particularly in living subjects. Here we performed a systematic analysis of the effects of strain and electronics on the reactivity of cyclooctynes with azides through both experimental measurements and computational studies using a density functional theory (DFT) distortion/interaction transition state model. In particular, we focused on biarylazacyclooctynone (BARAC) because it reacts with azides faster than any other reported cyclooctyne and its modular synthesis facilitated rapid access to analogues. We found that substituents on BARAC's aryl rings can alter the calculated transition state interaction energy of the cycloaddition through electronic effects or the calculated distortion energy through steric effects. Experimental data confirmed that electronic perturbation of BARAC's aryl rings has a modest effect on reaction rate, whereas steric hindrance in the transition state can significantly retard the reaction. Drawing on these results, we analyzed the relationship between alkyne bond angles, which we determined using X-ray crystallography, and reactivity, quantified by experimental second-order rate constants, for a range of cyclooctynes. Our results suggest a correlation between decreased alkyne bond angle and increased cyclooctyne reactivity. Finally, we obtained structural and computational data that revealed the relationship between the conformation of BARAC's central lactam and compound reactivity. Collectively, these results indicate that the distortion/interaction model combined with bond angle analysis will enable predictions of cyclooctyne reactivity and the rational design of new reagents for copper-free click chemistry
    corecore