11 research outputs found
Oxalate-induced ceramide accumulation in Madin-Darby canine kidney and LLC-PK1 cells
BACKGROUND: Oxalate exposure produces oxidant stress in renal epithelial cells leading to death of some cells and adaptation of others. The pathways involved in these diverse actions remain unclear, but appear to involve activation of phospholipase A2 (PLA2) and redistribution of membrane phospholipids. The present studies examined the possibility that oxalate actions may also involve increased accumulation of ceramide, a lipid-signaling molecule implicated in a variety of pathways, including those leading to apoptotic cell death. METHODS: Ceramide accumulation was examined in renal epithelial cells from pig kidney (LLC-PK1 cells) and from dog kidney [Madin-Darby canine kidney (MDCK cells)] using the diacylglycerol kinase assay. Sphingomyelin degradation was assessed by monitoring the disappearance of 3H-sphingomyelin from cells that had been prelabeled with [3H]-choline. The effects of oxalate were compared with those of other oxidants (peroxide, xanthine/xanthine oxidase), other organic acids (formate and citrate), and a known activator of sphingomyelinase in these cells [tumor necrosis factor-alpha (TNF-alpha)]. Separate studies determined whether oxalate-induced accumulation of ceramide could be blocked by pretreatment with antioxidants [Mn (III) tetrakis (1-methyl-4-pyridyl) porphyrin (Mn TMPyP, a superoxide dismutase mimetic) or N-acetylcysteine (NAC; an antioxidant)], with an inhibitor of ceramide synthase [fumonisin B1 (FB1)] or with an inhibitor of PLA2 [arachidonyl trifluoromethylketone (AACOCF3)]. RESULTS: Oxalate exposure produced a significant time- and concentration-dependent increase in cellular ceramide. A reciprocal decrease in 3H-sphingomyelin was observed under these conditions. Increases in cellular ceramide levels were also observed after treatment with other oxidants (hydrogen peroxide, and xanthine/xanthine oxidase), activators of sphingomyelinase (TNF-alpha), exogenous sphingomyelinase, or arachidonic acid. Formate produced similar (albeit smaller) effects, and citrate did not. The oxidant-induced increases in ceramide were attenuated by pretreatment with NAC (a glutathione precursor) and MnTMPyP (a superoxide dismutase mimetic), suggesting a role for cellular redox states. The oxalate-induced increase in ceramide was also attenuated by pretreatment with AACOCF3, suggesting a role for PLA2. Pretreatment with FB1 produced a small but statistically insignificant attenuation of the response to oxalate. CONCLUSIONS: Oxalate exposure produces a marked accumulation of ceramide in renal epithelial cells by a process that is redox sensitive and mediated in part by activation of PLA2. Since cellular sphingomyelin decreased as ceramide increased, it seems likely that oxalate actions are mediated, at least in part, by an increase in sphingomyelinase activity, although alterations in ceramide synthase are also possible. Further study is required to define the steps involved in oxalate actions and to determine the extent to which ceramide signaling mediates oxalate actions
Role of phospholipase A2 in the cytotoxic effects of oxalate in cultured renal epithelial cells
BACKGROUND: Oxalate, a common constituent of kidney stones, is cytotoxic for renal epithelial cells. Although the exact mechanism of oxalate-induced cell death remains unclear, studies in various cell types, including renal epithelial cells, have implicated phospholipase A2 (PLA2) as a prominent mediator of cellular injury. Thus, these studies examined the role of PLA2 in the cytotoxic effects of oxalate. METHODS: The release of [3H]-arachidonic acid (AA) or [3H]-oleic acid (OA) from prelabeled Madin-Darby canine kidney (MDCK) cells was measured as an index for PLA2 activity. The cell viability was assessed by the exclusion of ethidium homodimer-1. RESULTS: Oxalate exposure (175 to 550 microM free) increased the release of [3H]-AA in MDCK cells but had no effect on the release of [3H]-OA. Oxalate-induced [3H]-AA release was abolished by arachidonyl trifluoromethyl ketone (AACOCF3), a selective inhibitor of cytosolic PLA2 (cPLA2), but was not affected by selective inhibitors of secretory PLA2 and calcium-independent PLA2. The [3H]-AA release could be demonstrated within 15 minutes after exposure to oxalate, which is considerably earlier than the observed changes in cell viability. Furthermore, AACOCF3 significantly reduced oxalate toxicity in MDCK cells. CONCLUSIONS: Oxalate increases AA release from MDCK cells by a process involving cPLA2. In addition, based on the evidence obtained using a selective inhibitor of this isoform, it would appear that the activity of this enzyme is responsible, at least in part, for the cytotoxic effects of oxalate. The finding that oxalate can trigger a known lipid-signaling pathway may provide new insight into the initial events in the pathogenesis of nephrolithiasis
Phospholipase A2 mediates immediate early genes in cultured renal epithelial cells: possible role of lysophospholipid
BACKGROUND: Exposure to high levels of oxalate induces oxidant stress in renal epithelial cells and produces diverse changes in cell function, ranging from cell death to cellular adaptation, as evidenced by increased DNA synthesis, cellular proliferation, and induction of genes associated with remodeling and repair. These studies focused on cellular adaptation to this oxidant stress, examining the manner by which oxalate exposure leads to increased expression of immediate early genes (IEGs). Specifically, our studies assessed the possibility that oxalate-induced changes in IEG expression are mediated by phospholipase A2 (PLA2), a common pathway in cellular stress responses. METHODS: Madin-Darby canine kidney (MDCK) cells were exposed to oxalate in the presence or absence of PLA2 inhibitors: mepacrine and arachidonyl trifluoromethyl ketone (AACOCF3). Expression of IEG (c-jun, egr-1, and c-myc) mRNA was assessed by Northern blot analysis. PLA2 activity was determined by measuring the release of [3H]arachidonic acid (AA) from prelabeled cells. RESULTS: Oxalate exposure (1 to 1.5 mmol/L) induced time- and concentration-dependent increases in IEG mRNA. Treatment with mepacrine resulted in a 75 to 113% reduction of oxalate-induced c-jun, egr-1, and c-myc mRNA, while AACOCF3 caused a 41 to 46% reduction of oxalate-induced c-jun and egr-1 mRNA. Of the two major byproducts of PLA2, only lysophosphatidylcholine (20 micromol/L) increased c-jun and egr-1 mRNA. In contrast, AA (25 micromol/L) attenuated the oxalate-induced increase in c-jun and egr-1 mRNA, presumably by inhibiting PLA2 activity. CONCLUSIONS: These findings suggest that PLA2 plays a major role in oxalate-induced IEG expression in renal epithelial cells and that lysophospholipids might be a possible lipid mediator in this pathway
Oxalate toxicity in LLC-PK1 cells: Role of free radicals
Oxalate toxicity in LLC-PK1 cells: Role of free radicals. Oxalate, the most common constituent of kidney stones, is an end product of metabolism that is excreted by the kidney. During excretion, oxalate is transported by a variety of transport systems and accumulates in renal tubular cells. This process has been considered benign; however, recent studies on LLC-PK1 cells suggested that high concentrations of oxalate are toxic, inducing morphological alterations, increases in membrane permeability to vital dyes and loss of cells from the monolayer cultures. The present studies examined the basis for oxalate toxicity, focusing on the possibility that oxalate exposure might increase the production/availability of free radicals in LLC-PK1 cells. Free radical production was monitored in two ways, by monitoring the reduction of nitroblue tetrazolium to a blue reaction product and by following the conversion of dihydrorhodamine 123 (DHR) to its fluorescent derivative, rhodamine 123. Such studies demonstrated that oxalate induces a concentration-dependent increase in dye conversion by a process that is sensitive to free radical scavengers. Specifically, addition of catalase or superoxide dismutase blocked the oxalate-induced changes in dye fluorescence/absorbance. Addition of these free radical scavengers also prevented the oxalate-induced loss of membrane integrity in LLC-PK1 cells. Thus it seems likely that free radicals are responsible for oxalate toxicity. The levels of oxalate that induced toxicity in LLC-PK1 cells (350 µm) was only slightly higher than would be expected to occur in the renal cortex. These considerations suggest that hyperoxaluria may contribute to the progression of renal injury in several forms of renal disease
No Change in Physician Dictation Patterns When Visit Notes Are Made Available Online for Patients
OBJECTIVE: To determine whether physicians document office visits differently when they know their patients have easy, online access to visit notes