52 research outputs found

    The action of β-hydroxybutyrate on the growth, metabolism and global histone H3 acetylation of spontaneous mouse mammary tumours: evidence of a β-hydroxybutyrate paradox

    Get PDF
    Background Ketone bodies have both metabolic and epigenetic roles in cancer. In several studies, they showed an anti-cancer effect via inhibition of histone deacetylases; however, other studies observed faster tumour growth. The related molecule butyrate also inhibits growth of some cancer cells and accelerates it in others. This “butyrate paradox” is thought to be due to butyrate mediating histone acetylation and thus inhibiting cell proliferation in cancers that preferentially utilise glucose (the Warburg effect); whereas in cells that oxidise butyrate as a fuel, it fails to reach inhibitory concentrations and can stimulate growth. Methods We treated transgenic mice bearing spontaneous MMTV-NEU-NT mammary tumours with the ketone body β-hydroxybutyrate (β-OHB) and monitored tumour growth, metabolite concentrations and histone acetylation. In a cell line derived from these tumours, we also measured uptake of β-OHB and glucose, and lactate production, in the absence and presence of β-OHB. Results β-OHB administration accelerated growth of MMTV-NEU-NT tumours, and their metabolic profile showed significant increases in ATP, glutamine, serine and choline-related metabolites. The β-OHB concentration within the treated tumours, 0.46 ± 0.05 μmol/g, had no effect on histone acetylation as shown by western blots. Cultured tumour cells incubated with 0.5 mM β-OHB showed β-OHB uptake that would be equivalent to 54% of glycolytic ATP phosphorylation and no significant change in glucose consumption or lactate production. Conclusions These results suggest that a β-OHB paradox may occur in these mammary tumours in a manner analogous to the butyrate paradox. At low β-OHB concentrations (<1 mM, as observed in our tumour model post-treatment), and in the absence of a Warburg effect, β-OHB is consumed and thus acts as an oxidative energy source and not as an epigenetic factor. This would explain the increase in tumour growth after treatment, the metabolic profiles and the absence of an effect on histone H3 acetylation.We acknowledge the support of the University of Cambridge, Cancer Research UK (C14303/A17197) and Hutchison Whampoa Limited

    The relationship between endogenous thymidine concentrations and [F-18]FLT uptake in a range of preclinical tumour models

    Get PDF
    BACKGROUND: Recent studies have shown that 3′-deoxy-3′-[18F] fluorothymidine ([18F]FLT)) uptake depends on endogenous tumour thymidine concentration. The purpose of this study was to investigate tumour thymidine concentrations and whether they correlated with [18F]FLT uptake across a broad spectrum of murine cancer models. A modified liquid chromatography-mass spectrometry (LC-MS/MS) method was used to determine endogenous thymidine concentrations in plasma and tissues of tumour-bearing and non-tumour bearing mice and rats. Thymidine concentrations were determined in 22 tumour models, including xenografts, syngeneic and spontaneous tumours, from six research centres, and a subset was compared for [18F]FLT uptake, described by the maximum and mean tumour-to-liver uptake ratio (TTL) and SUV. RESULTS: The LC-MS/MS method used to measure thymidine in plasma and tissue was modified to improve sensitivity and reproducibility. Thymidine concentrations determined in the plasma of 7 murine strains and one rat strain were between 0.61 ± 0.12 μM and 2.04 ± 0.64 μM, while the concentrations in 22 tumour models ranged from 0.54 ± 0.17 μM to 20.65 ± 3.65 μM. TTL at 60 min after [18F]FLT injection, determined in 14 of the 22 tumour models, ranged from 1.07 ± 0.16 to 5.22 ± 0.83 for the maximum and 0.67 ± 0.17 to 2.10 ± 0.18 for the mean uptake. TTL did not correlate with tumour thymidine concentrations. CONCLUSIONS: Endogenous tumour thymidine concentrations alone are not predictive of [18F]FLT uptake in murine cancer models

    Gemcitabine Mechanism of Action Confounds Early Assessment of Treatment Response by 3'-Deoxy-3'-[18^{18}F]Fluorothymidine in Preclinical Models of Lung Cancer

    Get PDF
    3'-Deoxy-3'-[18^{18}F]fluorothymidine positron emission tomography ([18^{18}F]FLT-PET) and diffusion-weighted MRI (DW-MRI) are promising approaches to monitor tumor therapy response. Here, we employed these two imaging modalities to evaluate the response of lung carcinoma xenografts in mice after gemcitabine therapy. Caliper measurements revealed that H1975 xenografts responded to gemcitabine treatment, whereas A549 growth was not affected. In both tumor models, uptake of [18^{18}F]FLT was significantly reduced 6 hours after drug administration. On the basis of the gemcitabine concentration and [18^{18}F]FLT excretion measured, this was presumably related to a direct competition of gemcitabine with the radiotracer for cellular uptake. On day 1 after therapy, [18^{18}F]FLT uptake was increased in both models, which was correlated with thymidine kinase 1 (TK1) expression. Two and 3 days after drug administration, [18^{18}F]FLT uptake as well as TK1 and Ki67 expression were unchanged. A reduction in [18^{18}F]FLT in the responsive H1975 xenografts could only be noted on day 5 of therapy. Changes in ADCmean_{mean} in A549 xenografts 1 or 2 days after gemcitabine did not seem to be of therapy-related biological relevance as they were not related to cell death (assessed by caspase-3 IHC and cellular density) or tumor therapy response. Taken together, in these models, early changes of [18^{18}F]FLT uptake in tumors reflected mechanisms, such as competing gemcitabine uptake or gemcitabine-induced thymidylate synthase inhibition, and only reflected growth-inhibitory effects at a later time point. Hence, the time point for [18^{18}F]FLT-PET imaging of tumor response to gemcitabine is of crucial importance.The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking (www.imi.europa.eu) under grant agreement number 115151, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution. This work was also supported by the Deutsche Forschungsgemeinschaft (DFG), Cells-in-Motion Cluster of Excellence (EXC1003 – CiM), University of Munster (Münster, Germany)

    Phase II study of the oxygen saturation curve left shifting agent BW12C in combination with the hypoxia activated drug mitomycin C in advanced colorectal cancer

    Get PDF
    BW12C (5-[2-formyl-3-hydroxypenoxyl] pentanoic acid) stabilizes oxyhaemoglobin, causing a reversible left-shift of the oxygen saturation curve (OSC) and tissue hypoxia. The activity of mitomycin C (MMC) is enhanced by hypoxia. In this phase II study, 17 patients with metastatic colorectal cancer resistant to 5-fluorouracil (5-FU) received BW12C and MMC. BW12C was given as a bolus loading dose of 45 mg kg−1over 1 h, followed by a maintenance infusion of 4 mg kg−1h−1for 5 h. MMC 6 mg m−2was administered over 15 min immediately after the BW12C bolus. The 15 evaluable patients had progressive disease after a median of 2 (range 1–4) cycles of chemotherapy. Haemoglobin electrophoresis 3 and 5 h after the BW12C bolus dose showed a fast moving band consistent with the BW12C-oxyhaemoglobin complex, accounting for approximately 50% of total haemoglobin. The predominant toxicities – nausea/vomiting and vein pain – were mild and did not exceed CTC grade 2. Liver31P magnetic resonance spectroscopy of patients with hepatic metastases showed no changes consistent with tissue hypoxia. The principle of combining a hypoxically activated drug with an agent that increases tissue hypoxia is clinically feasible, producing an effect equivalent to reducing tumour oxygen delivery by at least 50%. However, BW12C in combination with MMC for 5-FU-resistant colorectal cancer is not an effective regimen. This could be related to drug resistance rather than a failure to enhance cytotoxicity. © 2000 Cancer Research Campaig

    Complete genome sequences of elephant endotheliotropic herpesviruses 1A and 1B determined directly from fatal cases

    Get PDF
    A highly lethal hemorrhagic disease associated with infection by elephant endotheliotropic herpesvirus (EEHV) poses a severe threat to Asian elephant husbandry. We have used high-throughput methods to sequence the genomes of the two genotypes that are involved in most fatalities, namely EEHV1A and EEHV1B (species Elephantid herpesvirus 1, genus Proboscivirus, subfamily Betaherpesvirinae, family Herpesviridae). The sequences were determined from postmortem tissue samples, despite the data containing tiny proportions of viral reads among reads from a host for which the genome sequence was not available. The EEHV1A genome is 180,421 bp in size and consists of a unique sequence (174,601 bp) flanked by a terminal direct repeat (2,910 bp). The genome contains 116 predicted protein-coding genes, of which six are fragmented, and seven paralogous gene families are present. The EEHV1B genome is very similar to that of EEHV1A in structure, size, and gene layout. Half of the EEHV1A genes lack orthologs in other members of subfamily Betaherpesvirinae, such as human cytomegalovirus (genus Cytomegalovirus) and human herpesvirus 6A (genus Roseolovirus). Notable among these are 23 genes encoding type 3 membrane proteins containing seven transmembrane domains (the 7TM family) and seven genes encoding related type 2 membrane proteins (the EE50 family). The EE50 family appears to be under intense evolutionary selection, as it is highly diverged between the two genotypes, exhibits evidence of sequence duplications or deletions, and contains several fragmented genes. The availability of the genome sequences will facilitate future research on the epidemiology, pathogenesis, diagnosis, and treatment of EEHV-associated disease

    In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography

    Get PDF
    Development of hypoxia-targeted therapies has stimulated the search for clinically applicable noninvasive markers of tumour hypoxia. Here, we describe the validation of [18F]fluoroetanidazole ([18F]FETA) as a tumour hypoxia marker by positron emission tomography (PET). Cellular transport and retention of [18F]FETA were determined in vitro under air vs nitrogen. Biodistribution and metabolism of the radiotracer were determined in mice bearing MCF-7, RIF-1, EMT6, HT1080/26.6, and HT1080/1-3C xenografts. Dynamic PET imaging was performed on a dedicated small animal scanner. [18F]FETA, with an octanol–water partition coefficient of 0.16±0.01, was selectively retained by RIF-1 cells under hypoxia compared to air (3.4- to 4.3-fold at 60–120 min). The radiotracer was stable in the plasma and distributed well to all the tissues studied. The 60-min tumour/muscle ratios positively correlated with the percentage of pO2 values <5 mmHg (r=0.805, P=0.027) and carbogen breathing decreased [18F]FETA-derived radioactivity levels (P=0.028). In contrast, nitroreductase activity did not influence accumulation. Tumours were sufficiently visualised by PET imaging within 30–60 min. Higher fractional retention of [18F]FETA in HT1080/1-3C vs HT1080/26.6 tumours determined by dynamic PET imaging (P=0.05) reflected higher percentage of pO2 values <1 mmHg (P=0.023), lower vessel density (P=0.026), and higher radiobiological hypoxic fraction (P=0.008) of the HT1080/1-3C tumours. In conclusion, [18F]FETA shows hypoxia-dependent tumour retention and is, thus, a promising PET marker that warrants clinical evaluation

    Dimethyl sulfoxide blocks herpes simplex virus-1 productive infection in vitro acting at different stages with positive cooperativity. Application of micro-array analysis

    Get PDF
    BACKGROUND: Dimethyl sulfoxide (DMSO) is frequently used at a concentration of up to 95% in the formulation of antiherpetic agents because of its properties as a skin penetration enhancer. Here, we have analyzed the effect of DMSO on several parameters of Herpes Simplex Virus replication. METHODS: Productive infection levels of HSV-1 were determined by plaque assay or by reporter gene activity, and its DNA replication was estimated by PCR. Transcript levels were evaluated with HSV-specific DNA micro-arrays. RESULTS: DMSO blocks productive infection in vitro in different cell types with a 50% inhibitory concentration (IC(50)) from 0.7 to 2% depending upon the multiplicity of infection. The concentration dependence exhibits a Hill coefficient greater than 1, indicating that DMSO blocks productive infection by acting at multiple different points (mechanisms of action) with positive cooperativity. Consistently, we identified at least three distinct temporal target mechanisms for inhibition of virus growth by DMSO. At late stages of infection, DMSO reduces virion infectivity, and markedly inhibits viral DNA replication. A third mode of action was revealed using an oligonucleotide-based DNA microarray system for HSV. These experiments showed that DMSO reduced the transcript levels of many HSV-1 genes; including several genes coding for proteins involved in forming and assembling the virion. Also, DMSO markedly inhibited some but not all early transcripts indicating a previously unknown mode for inhibiting the early phase of HSV transcription-replication cycle. CONCLUSION: These observations suggest that DMSO itself may have a role in the anti-herpetic activity of formulations utilizing it as a dispersant

    Induction of endothelial cell apoptosis by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid

    Get PDF
    5,6-Dimethylxanthenone-4-acetic acid, synthesised in this laboratory, reduces tumour blood flow, both in mice and in patients on Phase I trial. We used TUNEL (TdT-mediated dUTP nick end labelling) assays to investigate whether apoptosis induction was involved in its antivascular effect. 5,6-Dimethylxanthenone-4-acetic acid induced dose-dependent apoptosis in vitro in HECPP murine endothelial cells in the absence of up-regulation of mRNA for tumour necrosis factor. Selective apoptosis of endothelial cells was detected in vivo in sections of Colon 38 tumours in mice within 30 min of administration of 5,6-Dimethylxanthenone-4-acetic acid (25 mg kg−1). TUNEL staining intensified with time and after 3 h, necrosis of adjacent tumour tissue was observed. Apoptosis of central vessels in splenic white pulp was also detected in tumour-bearing mice but not in mice without tumours. Apoptosis was not observed in liver tissue. No apoptosis was observed with the inactive analogue 8-methylxanthenone-4-acetic acid. Positive TUNEL staining of tumour vascular endothelium was evident in one patient in a Phase I clinical trial, from a breast tumour biopsy taken 3 and 24 h after infusion of 5,6-Dimethylxanthenone-4-acetic acid (3.1 mg m−2). Tumour necrosis and the production of tumour tumour necrosis factor were not observed. No apoptotic staining was seen in tumour biopsies taken from two other patients (doses of 3.7 and 4.9 mg m−2). We conclude that 5,6-Dimethylxanthenone-4-acetic acid can induce vascular endothelial cell apoptosis in some murine and human tumours. The action is rapid and appears to be independent of tumour necrosis factor induction

    Molecular imaging of hypoxia with radiolabelled agents

    Get PDF
    Tissue hypoxia results from an inadequate supply of oxygen (O2) that compromises biological functions. Structural and functional abnormalities of the tumour vasculature together with altered diffusion conditions inside the tumour seem to be the main causes of tumour hypoxia. Evidence from experimental and clinical studies points to a role for tumour hypoxia in tumour propagation, resistance to therapy and malignant progression. This has led to the development of assays for the detection of hypoxia in patients in order to predict outcome and identify patients with a worse prognosis and/or patients that would benefit from appropriate treatments. A variety of invasive and non-invasive approaches have been developed to measure tumour oxygenation including oxygen-sensitive electrodes and hypoxia marker techniques using various labels that can be detected by different methods such as positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), autoradiography and immunohistochemistry. This review aims to give a detailed overview of non-invasive molecular imaging modalities with radiolabelled PET and SPECT tracers that are available to measure tumour hypoxia

    Herpes Simplex Virus Dances with Amyloid Precursor Protein while Exiting the Cell

    Get PDF
    Herpes simplex type 1 (HSV1) replicates in epithelial cells and secondarily enters local sensory neuronal processes, traveling retrograde to the neuronal nucleus to enter latency. Upon reawakening newly synthesized viral particles travel anterograde back to the epithelial cells of the lip, causing the recurrent cold sore. HSV1 co-purifies with amyloid precursor protein (APP), a cellular transmembrane glycoprotein and receptor for anterograde transport machinery that when proteolyzed produces A-beta, the major component of senile plaques. Here we focus on transport inside epithelial cells of newly synthesized virus during its transit to the cell surface. We hypothesize that HSV1 recruits cellular APP during transport. We explore this with quantitative immuno-fluorescence, immuno-gold electron-microscopy and live cell confocal imaging. After synchronous infection most nascent VP26-GFP-labeled viral particles in the cytoplasm co-localize with APP (72.8+/−6.7%) and travel together with APP inside living cells (81.1+/−28.9%). This interaction has functional consequences: HSV1 infection decreases the average velocity of APP particles (from 1.1+/−0.2 to 0.3+/−0.1 µm/s) and results in APP mal-distribution in infected cells, while interplay with APP-particles increases the frequency (from 10% to 81% motile) and velocity (from 0.3+/−0.1 to 0.4+/−0.1 µm/s) of VP26-GFP transport. In cells infected with HSV1 lacking the viral Fc receptor, gE, an envelope glycoprotein also involved in viral axonal transport, APP-capsid interactions are preserved while the distribution and dynamics of dual-label particles differ from wild-type by both immuno-fluorescence and live imaging. Knock-down of APP with siRNA eliminates APP staining, confirming specificity. Our results indicate that most intracellular HSV1 particles undergo frequent dynamic interplay with APP in a manner that facilitates viral transport and interferes with normal APP transport and distribution. Such dynamic interactions between APP and HSV1 suggest a mechanistic basis for the observed clinical relationship between HSV1 seropositivity and risk of Alzheimer's disease
    corecore