545 research outputs found

    Thermal transport measurements of individual multiwalled nanotubes

    Full text link
    The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device. The observed thermal conductivity is more than 3000 W/K m at room temperature, which is two orders of magnitude higher than the estimation from previous experiments that used macroscopic mat samples. The temperature dependence of the thermal conductivity of nanotubes exhibits a peak at 320 K due to the onset of Umklapp phonon scattering. The measured thermoelectric power shows linear temperature dependence with a value of 80 μ\muV/K at room temperature.Comment: 4 pages, figures include

    Single-Walled Carbon Nanotubes as Shadow Masks for Nanogap Fabrication

    Full text link
    We describe a technique for fabricating nanometer-scale gaps in Pt wires on insulating substrates, using individual single-walled carbon nanotubes as shadow masks during metal deposition. More than 80% of the devices display current-voltage dependencies characteristic of direct electron tunneling. Fits to the current-voltage data yield gap widths in the 0.8-2.3 nm range for these devices, dimensions that are well suited for single-molecule transport measurements

    Time Periodic Behavior of Multiband Superlattices in Static Electric Fields

    Full text link
    We use an analytic perturbation expansion for the two-band system of tight binding electrons to discuss Bloch oscillations and Zener tunneling within this model. We make comparison with recent numerical results and predict analytically the frequency of radiation expected from Zener tunneling, including its disappearance, as a function of the system parameters.Comment: 12 pages, no figure include

    Formation energy and interaction of point defects in two-dimensional colloidal crystals

    Full text link
    The manipulation of individual colloidal particles using optical tweezers has allowed vacancies to be created in two-dimensional (2d) colloidal crystals, with unprecedented possibility of real-time monitoring the dynamics of such defects (Nature {\bf 413}, 147 (2001)). In this Letter, we employ molecular dynamics (MD) simulations to calculate the formation energy of single defects and the binding energy between pairs of defects in a 2d colloidal crystal. In the light of our results, experimental observations of vacancies could be explained and then compared to simulation results for the interstitial defects. We see a remarkable similarity between our results for a 2d colloidal crystal and the 2d Wigner crystal (Phys. Rev. Lett. {\bf 86}, 492 (2001)). The results show that the formation energy to create a single interstitial is 1212% - 28% lower than that of the vacancy. Because the pair binding energies of the defects are strongly attractive for short distances, the ground state should correspond to bound pairs with the interstitial bound pairs being the most probable.Comment: 5 pages, 2 figure

    B\"{a}cklund transformations for high-order constrained flows of the AKNS hierarchy: canonicity and spectrality property

    Full text link
    New infinite number of one- and two-point B\"{a}cklund transformations (BTs) with explicit expressions are constructed for the high-order constrained flows of the AKNS hierarchy. It is shown that these BTs are canonical transformations including B\"{a}cklund parameter η\eta and a spectrality property holds with respect to η\eta and the 'conjugated' variable μ\mu for which the point (η,μ)(\eta, \mu) belongs to the spectral curve. Also the formulas of m-times repeated Darboux transformations for the high-order constrained flows of the AKNS hierarchy are presented.Comment: 21 pages, Latex, to be published in J. Phys.

    Magnetism in Semiconducting Molybdenum Dichalcogenides

    Get PDF
    Transition metal dichalcogenides (TMDs) are interesting for understanding fundamental physics of two-dimensional materials (2D) as well as for many emerging technologies, including spin electronics. Here, we report the discovery of long-range magnetic order below TM = 40 K and 100 K in bulk semiconducting TMDs 2H-MoTe2 and 2H-MoSe2, respectively, by means of muon spin-rotation (muSR), scanning tunneling microscopy (STM), as well as density functional theory (DFT) calculations. The muon spin rotation measurements show the presence of a large and homogeneous internal magnetic fields at low temperatures in both compounds indicative of long-range magnetic order. DFT calculations show that this magnetism is promoted by the presence of defects in the crystal. The STM measurements show that the vast majority of defects in these materials are metal vacancies and chalcogen-metal antisites which are randomly distributed in the lattice at the sub-percent level. DFT indicates that the antisite defects are magnetic with a magnetic moment in the range of 0.9-2.8 mu_B. Further, we find that the magnetic order stabilized in 2H-MoTe2 and 2H-MoSe2 is highly sensitive to hydrostatic pressure. These observations establish 2H-MoTe2 and 2H-MoSe2 as a new class of magnetic semiconductors and opens a path to studying the interplay of 2D physics and magnetism in these interesting semiconductors.Comment: 13 pages, 10 Figure

    Temperature dependence of polaronic transport through single molecules and quantum dots

    Get PDF
    Motivated by recent experiments on electric transport through single molecules and quantum dots, we investigate a model for transport that allows for significant coupling between the electrons and a boson mode isolated on the molecule or dot. We focus our attention on the temperature dependent properties of the transport. In the Holstein picture for polaronic transport in molecular crystals the temperature dependence of the conductivity exhibits a crossover from coherent (band) to incoherent (hopping) transport. Here, the temperature dependence of the differential conductance on resonance does not show such a crossover, but is mostly determined by the lifetime of the resonant level on the molecule or dot.Comment: 8 pages, 7 figure

    Measuring Temperature Gradients over Nanometer Length Scales

    Full text link
    When a quantum dot is subjected to a thermal gradient, the temperature of electrons entering the dot can be determined from the dot's thermocurrent if the conductance spectrum and background temperature are known. We demonstrate this technique by measuring the temperature difference across a 15 nm quantum dot embedded in a nanowire. This technique can be used when the dot's energy states are separated by many kT and will enable future quantitative investigations of electron-phonon interaction, nonlinear thermoelectric effects, and the effciency of thermoelectric energy conversion in quantum dots.Comment: 6 pages, 5 figure

    Electrical Conductivity of Fermi Liquids. II. Quasiparticle Transport

    Full text link
    We develop a general theory of Fermi liquids to discuss the Kadowaki-Woods relation Aγ2A\propto \gamma^2. We derive a formula for the ratio A/γ2A/\gamma^2 which is expressed as a product of two dimensionless parameters α\alpha and FF, where α\alpha represents a coupling constant for quasiparticle scattering and FF is a geometric factor determined by the shape of the Fermi surface. Then we argue that the universal ratio observed in heavy fermion compounds is reproduced under the conditions α1\alpha\sim 1 and F20F\sim 20. The former is regarded as a universality of Fermi liquids in a strong coupling regime, and the latter is corroborated by evaluating FF definitely in simple cases. It is noted that the proportional relation is just an example of the universal phenomena to be expected for the whole class of strong coupling Fermi liquids.Comment: 28 pages, 7 figures; J. Phys. Soc. Jpn. Vol.67, No.1
    corecore