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Temperature dependence of polaronic transport through single molecules and quantum dots
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Motivated by recent experiments on electric transport through single molecules and quantum dots, we
investigate a model for transport that allows for significant coupling between the electrons and a boson mode
isolated on the molecule or dot. We focus our attention on the temperature-dependent properties of the trans-
port. In the Holstein picture for polaronic transport in molecular crystals the temperature dependence of the
conductivity exhibits a crossover from coherémand to incoherenthopping transport. Here, the temperature
dependence of the differential conductance on resonance does not show such a crossover, but is mostly
determined by the lifetime of the resonant level on the molecule or dot.
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[. INTRODUCTION transport through molecules and quantum dots. This might
be expected because of the mathematical similarity between
In recent years there has been a growing interest in eledhe models for periodic systems and the resonant tunneling
trical transport through single molecutedand single elec- case. We might expect the tunneling amplitude between the
tronic levels in quantum dofs’ Some molecular devices leads and dot to be reduced by polaronic effects, thereby
exhibit switching behavior with large on-off ratibicreas- ~ reducing the coherent part of the conductivity. When increas-
ing the motivation to construct molecular electronic devftes. ing the temperature the electrons can tunnel with boson as-
In some cases it has been found that the transport is quiisted transport that enhances the tunneling, possibly leading
temperature dependérand it has been suggesteatiat this t0 a crossover behavior. There have been many theoretical
is due to the presence of low energy boson modes, such #vestigations of the effect of phonons on the transport
internal rotations, which couple strongly to the molecularthrough moleculés™*~*®and quantum dot§,??but none of
electronic states, and can easily be excited by smalihem focuses on the temperature dependence of the current.
temperature2°In a similar vein, in double quantum dots it The purpose of this paper is to clarify this aspect of the
has been found that there are acoustic phonons which coupleansport. Liet al?* included a Hubbard term, but did not
strongly to the electrons’ consider multiphonon contributions. In a recent paper Em-
Some experimental values for the phonon energy hav&erly and Kirczeno’ made a thorough analysis of conduc-
been estimated in various papers. In Table | we give somtance through a molecular wire. A set of self-consistent equa-
numbers for reference. We see that the bm'Ma”y pho- tions where set up and solved to give the distribution
non) frequency in these systems is quite small, Correspondﬂjnctions in the leads and molecule, and then transmission
ing to temperatures in the range 0.5-50 K. In addition therdrobabilities were calculated. However, the temperature de-
was a recent proposatto consider transport through a quan- pendence is not addressed in that paper.
tum dot to a carbon nanotube cantilever with a resonant fre- In this paper we perform the analysis for the simplest
quency of the order of 100 MHz, corresponding to a phonorPossible case, where the electrons interact with a single op-
energy of 0.4 ueV. If the electron-phonon coupling is suf- tical boson localized on the dot or molecule. We anticipate
ficienﬂy |arge po]aronic transport m|ght be important for that this is sufficient to illustrate the main phySiCS in the
these systems. When the electron tunnels through it can afore complicated case of many bosons, such as acoustic
sorb or emit bosons, thus altering its energy and the currenhonons. In order to obtain analytical results we have to
If the temperature is much larger than the boson energy, the@ssume that the coupling to the leads is small and the energy
are many bosons available for absorption and this mightevel in the dot or molecule is not too close to the Fermi
heavily influence the current. energy in the lead$?*By assuming that the coupling to the
In 1959 Holstei' predicted that for a periodic one- leads is small we can calculate the effects from the bosons
dimensional molecular crystal with strong electron-phonon _ .
coupling there should be a crossover from coheteand to TABLE I. Typical values folr paranjeterg taken from expgrlment.
incoherent(hopping transport with increasing temperature. "o IS the boson energy aridis the line width due to coupling to

When increasing the temperature the effective bandwidth betbe leads(defined below of the resonant level on the molecule or

L . . d{)t. I max IS the maximal current driven through the system.
comes narrower, this gives rise to a decrease in coheren

transport. In contrast, increasing temperature means th

more and more phonons are activated and we are in a regim stem o ' ' max
where phonon assisted intersite tunneling starts to contribute quantum dotgRef. 7 40 ueV 0.2 peV 3 pA
to the conductivity. This coherent-incoherent crossover is be2 quantum dotgRefs. 6,30 30 uev 1 ueVv 5 pA
lieved to have been observed for the first time quite recentlynolecule(Refs. 1,8 3 meV 1nA
in single crystals of pentaceﬁ%One aim of this paper is to  c,, molecule(Ref. 2 5 meV 0.1 nA

see whether a similar crossover should be seen in polaronie
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Hiz Ha-3 Hereeq is the energy of the level in the dot/molecule arisl
LN the energy associated with hopping onto/off the dot. The
electronic dispersion in the leads are givenepyand €k, M

is the coupling to the local boson mode with enefigy,. We

I _Pv/z disregard the spin dependence for simplicity.
______________ First we make a unitary transformation to diagonalize the

) Hamiltonian,. The price we pay for this is that extra op-
! ? s erators attach to the tunneling term in the Hamiltonian. The
transformation isH,=eSH e~ S, where S=c'c(M/%w)
FIG. 1. Tunneling through a system with one level. The dashedX(a'—a). This gives us
lines indicate the bosonic satellitésee teXt The Fermi energy in _ . +
the leads is chosen to be zero. The electrons has to tunnel through Hy=hfwoed'a—Ac,Cy, 2
the barriers, and can absorb or emit bosons in the process, corrﬁl-here
sponding to the lines below and above the central resonance, re-
spectively. The Hamiltonian given in E€}l) contains terms describ- M2
ing the different parts of the system. A=——¢p. ©)
ﬁwo
|Oca.”y on the molecu|e/d0t and then assume that the eﬁeqp\/hen the Centra' System iS a quantum d@t(and thusA)
on the leads from the bosons is negligible. This enables us tgan be adjusted by applying a gate voltage. After the trans-

use well-known results from mesoscopic transport theoryformation the tunneling part of the Hamiltonian becomes
The bosons are possibly most often phonons, but since the

theory will look identical(assuming linear coupindor dif- —
i Hq- =2 t(cT c,X+H.c.)
ferent types of boson§honons, magnons, charge oscilla- 1-27 < ky~2 '
tions) we will simply refer to “bosons.” Even in photon !
assisted tunneling through quantum dots side bands have o
been observed when tuning the photon enégn Sec. II Hoz=2, t(cE3c2X+ H.c), (4)

eV/2

we will define the model we use and in Sec. lll, we discuss Ks
the approximations we have to make. Different limits for theyhere
current are derived in Sec. IV, and in Sec. V we discuss the
differential conductivity. M .
X=exr{h—w0(a—a ). (5)

Il. CURRENT THROUGH A LEVEL COUPLED

TO A LOCAL BOSON MODE The X factors can be absorbed into a renormalized electron

creation/annihilation operator in region 2, so that we are left

We consider the simplest possible model Hamiltonian anavith the usual resonant tunneling Hamiltonian except that
neglect the spin degree of freedom and any effects ofhe Greens function for the electrons on the molecule/dot has
electron-electron interactions. The system we study consistgn additional complicatior(.TTc(T)cT(O))ﬁ(TT?(T)?r(O»
of the individual entitiegleft lead, molecule or quantum dot, =(T _c(7)c'(0))(T,X(7)X'(0)). A formula for the current
and right leaglcoupled via tunneling. We assume that we arecan be derived using a Landauertiker approact®?’ First
dealing with a resonant tunneling situation, but the states ijve calculate the current from the left lead onto the dot from
the dot(or molecule or any single level systgmouples to  the rate of change of particles in the left lead. A similar
some boson mode with characteristic frequensy, as  expression for the current from the dot to the right lead is

shown in Fig. 1. The Hamiltonian is given by derived and the total current through the system is obtained
by combining these two formulas. The derivation is pre-
H=Hi+HotHztHi_ 2+ H;-3, (1) sented in detail in Refs. 26 and 27. The result is that the

where current is given by

2e
Mt =S auclont S eslon (V)=—1 J de[f1(e) ~ fa(€)IM{tTGy(e)]}.  (6)
1 3

The applied voltage across the systenViand it enters the
Hy= eoChcy+Hiwpata+ Mche,(a+ah), two Fermi functiongthe equilibrium Fermi level of the leads

is chosen to be zeyof,(e)=f(e—eV/2) and f5(e)="f(e
+eVI2). Further,G,(¢) is the Green function for the quan-

H1_2=E t(cllc2+ H.c), tum dot including all effects from the boson systamd the

Ky tunneling to the leads. The parameleis

r.r
H273:; t(c§302+H.c.). IOEELE o
3

Tl
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where F1(3)=27-rt2D1(3)(e), D,(g) is the density of states M2 -
(DOS) in the left(right) lead.I'; (3 Is the width of the central h_wo>r' 09:>1, hwe>Te 9,
resonance due to the tunneling to the I&f{)Y and right ("3)

lead. The total width of the local resonan€g, is the sum of

the two,I’',=T";+1T3 fiwo>|Al.

For convenience we introduce the dimensionless param- i o
P mI'he conditions on the first line means that the electron-boson

eters :
coupling has to be large enough to form a polaron. The last
requirement on the first line means that individual boson

M \?2 satellites can be distinguished from each other. The second
glz(m) , line tells us that if the level and boson satellites are too far
0 from the Fermi level it is energetically unlikely to have vir-
tual boson excitations, thus the leads are unaffected by the
( T )2 bosons. The narrowing is approximately given by
927 o t te—91(1/2¢ng) )

We emphasize that there are many different energy scaleshereng is the Bose function
associated with the systerkgT, eV, fiwg, I, M, and e,
The relative sizes of these energy scales have a significant 1
effect on the current through the system and what approxi- Ng
mations can be made in evaluating it.
The electrons will deposit/absorb energy from the bosonic
system that has to be carried away/supplied. Therefore andB=1/kgT.
question arises about how to define the temperature, particu- The above considerations apply to equilibriund <0)
larly of the molecule or dot. We assume that the molecule/dofvhereas we are interested in the nonequilibrium situation of
is in equilibrium with a bath and that the tunneling rate is@ finite bias, and particularly the resonant tunneling case
small so that the system relaxes to the initial state after eacthere one of the leads’ Fermi level is close to the dot/
tunneling event. In a quantum dot the bath can be the supnolecule level €V==A/2). In that case the narrowing of
strate that the quantum dot is manufactured on. For a mothe level width due to that leatbut not due to the second
ecule a surrounding cooling liguiccan play the role of the lead may occur, e.g.,
bath. Otherwise, we have to assume that the deposited or
absorbed energy is transferred to/from the molecule via the [,=T;+T 3T+ ;e 911+28) (10)
leads. As far as we are aware, this assumption is @fse
plicitly) made in all other theoretical work on this subject. If I';~I";5 this will lead to some quantitative but no signifi-
cant qualitative changes in the current-voltage characteristics
and so we will not consider them further.
lll. APPROXIMATE EVALUATION OF THE GREENS We treat the leads as unaffected by the bosons, i.e., no
FUNCTION G,(€) narrowing of the bands in the leads. This means that we
ignore the averages of th& operators that appear in the
tunneling part of the Hamiltonian, Ed@4), the justification
for this is given above. Below we will also assume that the
leads give rise to a flat, energy independent, density of states.
This is sometimes called the wide band lif#itOtherwisel

C)

ebhoo_q

To be able to use Eq6) we have to calculate the local
Green functionG,(€). Due to the coupling to the leads find-
ing G,(e) is a highly nontrivial problem in many-body
theory?~2*It is comparable in difficulty to the Kondo prob-
lem because of the possibility of nonperturbative effects,,,q he energy dependent. The quantum dot Green function
This is true even in equilibriurfi.e., in the qbsence of a bla_s, calculated using these approximations is
V=0). A recent study was made of a similar Hamiltonian
(with spin) using the numerical renormalization grotfdve
are interested in the nonequilibrium case where there is a
bias. In order to simplify the analysis we have to rely on
approximations, and the result will depend on how e
operators from Eq(5) are decoupled. One alternative is to
assume that the coupling to the leads is smiajhI'3<A, .
this is the approach taken here. This approximation is justi- _g _ T ilon(tti
fied for small currents, as is the case in the systems consid® t0=e 91(1+2nB)|:Z_w (291 Vng(1+ng)Jel ot 7142,
ered here. If we were to include the effect on the leads from (12
the bosons on the molecule/dot there would be a narrowing
effect onI'. Hewson and Newns used variational and perturwherel, denotes a modified Bessel function.
bation method$ to show that this narrowing only takes  We Fourier transform the Green function and get an ex-
place if the following conditions apply: pression for the total current

Gy(t)=—i0(t)ell2~T2Ahg=®(), (11

The factore™*® is due to the coupling to the boson and can
be writterf®
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FIG. 2. Transmission coefficient [mi(I'G,)], as a function of FIG. 3. Current as a function of the applied voltage for different

the energy, for three different temperatures. The satellites are due tthoice of coupling strengths. We de§T=0.1Awy and A =% wy/2.
the boson modesy; =(M/Awy)2=0.5 andg,= (I'/% wy)?=0.09.

The vertical axis is normalized to the highest peak in the plot. coupling to the bosonNl,g;=0) we get a single resonant

level without any satellites. This can be seen in Fig. 4 where
I(V)=— ifm de[f,(€)—f4(€)]e92(1+2me) we plot the current as a function ef,, the location of the
h /-« energy level in the dot or molecule. The application of a gate
" voltage in a quanté17m dot would be equivalent to changing
T\ hwnBl2 the leveley (or A).>" We see a shoulder developing corre-
X|=E,OO [2g1Vng(1+ng)Je” "0 sponding to the first boson satellite. A similar effect has been
seen in a double quantum dot systémihe absence of a
r+I, boson absorption peak in Fig. 4 is due to the low tempera-
X T 4T5)2" (13)  ture, this comes from the factet"“oA’2. If we increased the
(e+A+1hwg)’+ L3 temperature, or the electron-boson coupling, enough there
4 would be more side bands visible.

We can interpret Ifitr(I'G,) |, in Eq. (6), as the transmis-
sion coefficient for the tunneling. We plot this in Fig. 2 for a
certain choice of parameters. The resonances to the left of
(e+A)/fiwy corresponds to absorption of bosons, and the |n order to better understand the influence from the
ones to the right to emission of bosons. The middle line camosons on the current. Let us now have a look at the current
be identified as the so called zero-boson transition. The widtih some limits.
of each satellite depends &b directly. When increasing the
temperature the satellites increase in amplitude, indicating
that it is easier to emit/absorb bosons. The asymmetry be-
tween negative and positive energies is due to the factor
e '"*0f”2 This is a due to the fact that at low temperatures
there are no available bosons to absorb.

In Fig. 3 we plot the current as a function of voltage using
Eq. (13) for a set of parameters. It show steps indicating that
more and more satellites participate in conducting electrons.
Note that the steps in Fig. 3 occur every secéiag). This is
simply because the satellites are positioned equidistant on
each side of the central resonance, we have to increase the
voltage by Zw, in order to cover the satellite. The first
satellite starts to contribute to the current wrevi=2A. A
decrease of', (g, decreasgresults in sharper steps, and a
decrease in the amplitude of the current. WHeR% wg

(largeg,) the Ste_p structure disappears. _Increasmg the tem- FIG. 4. Current as a function of the location of the energy level
perature results in the step structure being washed out og, quantum dot when bosons are presant=(0.1) and absent
smooth Curve. . (9:=0). kgT=0.0% wy and we puty,=0.5. eV is set to 0.2 w,

When increasingV, the amphtudez of the current drops g, that we only scan a small region arousd Parameters are taken
due a decrease of the facter M/=0)*(1+2M8) in Eq. (13).  from Ref. 7. We only see the boson emission satellite due to the low
Increasing the temperature has the same effect. Without angmperature and the small electron-boson coupling.

IV. LIMITING BEHAVIOR FOR THE CURRENT

T T T T T
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A.M=0 integral from—o to . The integral gives a contributiof.
If we put the coupling between the boson and the elecAll parts coming from the boson gives 1 and we again have
trons to zero, we get the limit
e r,r [(eV>A,kgT) e (19
“ 1l'3 eV>A, =—,
()=—¢ | ddfy(o-tse ;. SR
hJ- , (I1+T3)
(e—€o) 4 This limit can be seen in Fig. 3 where all curves tend to the
(14) same limit at high applied voltage.
This would correspond to resonant tunneling without any 2. kg T<fiwg
bosons.

Let us now investigate the limkgT<fwq. In this limit
(corresponding to low temperatujege can approximate the
L keT>T',eV Bose function asig=e "“0/*6T<1. All terms correspond-
In this limit Eq. (14) reduces to the linear response ex-ing to positivel vanishes. This is a result of the physical fact
pression that positivel corresponds to boson absorption bufTat 0
there are no bosons. The Bessel function can be approxi-

| 4e? ol 1 |
S —— (15  mated ad(2)~ |_|(Z/2) whenz—0. Then we get that the
kgT coslt e T) current becomes
B
- . : , : 2el’ *
gls:jn;[{l:r form was used by Qiet al.’ to fit their experimen- Lo T<hog= __efglfimde[fl(e)_ fa(e)]
2. T=0 0 Fl+ r3
If the temperature goes to zero we can approximate the 2 g_ 2

(L1 +T3)%

Fermi functions with step functions. Then, the integral ower = 1!

2
can be performed and the result is (et A+Thwo)™+

vy 28 o EY2260) | o€V 260 (20
im =——|tan ‘| =———| +tan | ————
T—0 h I+T; Ii+13 3. kgT>hwg
(16) For high temperatures we approximate the Bose function

Further, ifeV and 2, is small compared t&,+1'; we can @S Ng=kgT/fiwo. The argument in the Bessel function is
use the property that tan(x) ~x, and we get large and we can use the property

lim |—£v 17 I,(2)= i . z>1. (21

T-0 h(rl+r3) 27z

(eV,2e0)/(T1+T3)<1

i.e., alinear regime at low voltages. If, on the other hand, we Using this, the current becomes

takeV—c in Eq. (16) we get hog
2el’ e 917kgT

J_mde[fl(e)—fs(e)]

el’ I kBT>fLw0: -

lim 1=—. (18) h JargksT/hwo

Vo I'1+I
This means that the whole resonant level contributes maxi- % 2 2 22)
mal to the current. 1< (I'1+T'3)2%"

(e+A+1hwg)’+ —
B. M#0
1. eVB>kpT, g C. Saddle point approximation
In this case we get the same limit as in E§8) even if If g,>1 (i.e.,I'>hwy) we can evaluate the current using

M#0 from Eg.(13). This can be seen in Fig. 3 where all a saddle-point approximation similar to that used previously

curves tend to the same value at laidelf we have that in Refs. 29 and 10. The exponential factog ®
eV>A kg T we can replacd,(e€)—fz(e) by a factor 1, and  =(X(t)X'(0)), in Eq. (12 can be written as

the integral would extend betweeneV/2 and eV/2. But , ,

sinceeV is greater than all other energies we extend the e 91l(ng+1)(1-e™ "0 +ng(1—e“oh)] (23

075303-5



URBAN LUNDIN AND ROSS H. McKENZIE PHYSICAL REVIEW B66, 075303 (2002

I,- ez
C=

T 0
hBﬁmdf{fl('s)[l—fl(E)]+f3(6)[1—fa(e)]}

X e 91+208) ¥ | [2g,\ng(1+ng)]
|=—o

I'i+I';
2

% g~ twoBl2

T2 @0

(e+A+1hwg)?+ 7

R Later we will seteV=2A, which corresponds to resonant
456 transport through the zero phonon feature. If we let the tem-
perature go to zero in this expression we can approximate the
FIG. 5. Failure of the saddle point approximation. Current cal-Fermi functions together with the temperature as a delta
culated in two different ways: the full lines were obtained using thefunction, 8n;(e)[ 1—n;(€) ]~ 8(€), and again only negative
exact resul{Eq. (13)] and the dashed lines using the saddle point| contributes, corresponding to emission of bosons, and we
approximation[Eq. (25)] in the expression for the current. We see get
that the saddle approximation does not reproduce the full expres-
sion for the current. Here we sk T=0.1%w, and A =% wy/2. eI, I'; 0 gll
[CV)Iro=—7p—e % 2

3
Vo, Vo,

We approximate the exponential function in the exponent,

e?~1+z+7%/2, and we get 1
X
, ([1+T3)°
G,(t)= —igl(A+a1hooUh—To2i—gy/2(1+ 2ng)(we)® (24 (A+1hwg+eVI2)?+————
Let us assume that we can neglect the term linearnnthe 1
exponent compared to the quadratic one, ig>g,. We + T, +T)2 ]|
Fourier transform the resulting Green function and get that (A+1hwo—eVI2)%+ S
the relevant factor entering E) becomes 4
(28)
XF{ (g1hwo+A+e)? We define
2
MGy e)] = 2Giwo (I 2na)] o (Cred®=[C(eV=24)]1 . (29
woV9g1(1+2ng)

For the particular casd># wg,0:% g, this simplifies to

0 (02 i . .
This approximation gives a broad Gaussian line shape coCred = (28 /h)[l“/(r1+l"3)]e 91, showing how polaronic
ering all the boson satellites. This is in contrast to the indi-€ffécts reduce the differential conductance. _
vidual boson satellites shown in Fig. 2. Using the saddle !N Fig. 6 we plot the differential conductance as a function
point approximation would give a Gaussian line shape irPf the. applied voltage for different values of temperature and
| (&o), Whereas a Lorentzian line shape occurs in the regimeEoupling parameters. The peakeaf=2A correspond to the
kgT<I'<hw,, illustrated in Fig. 4. zero-boson peak, and in the consecutive peaks one, two,

The current using Eq25) is plotted in Fig. 5, and com- thrée, ..., and so onposons are emitted or absorbed. As
pared to the full expressioid3). In this figure we can clearly S€€N I this figure increasing the temperature, or the level
see that the saddle point approximation cannot reproduce tHi¥dths, drastically affects the shape of the differential con-
actual current. Only for a small range of bias voltages, forductance.

low temperature and large coupling is there an agreement. " Fig- 7 we plot the differential conductance on reso-
nance with the zero phonon line as a function of temperature

for a range of parameters. In this figure we see that the dif-
V. DIFFERENTIAL CONDUCTANCE ferential conductance generally decreases with increasing
temperature, in contrast to the nonmonotonic dependence
found by Holsteift for periodic molecular crystals. The cor-
responding crossover behavidoes not occuffor transport
_ ﬂ (26) through molecules/quantum dots, since this would be indi-
dav’ cated by an upturn in Fig. 7 when increasing the temperature.
The absence of a crossover can also be seen by looking at
more clearly reveals the effect of the bosons. In general thiig. 3 from that the slope &V=2A (i.e., the differential
is given by conductancgis almost constant when changigg from 0 to

The differential conductance, defined by
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FIG. 6. Differential conductance as a function of applied voltage
when changing the temperatufepper lef}, electron-boson cou- , , , , , ,
pling g, (upper right and lower right and the level widthy, (lower 0 L 2 3 4 5 6
left). A= wy/2. At eV=2A it has a maxima for moderate cou- R
plingsg;=<1. To obtain a maximal signal it would be desirable to
perform the experiments at this value.

FIG. 7. Differential conductance at the resonance as a function
of temperature for different parameters. The upper graph shows

05 If leul he diff ial d . that, for moderate couplingg; <1, the differential conductance is
. I we were to calculate the differential conductance Naimost unaltered by the presence of the bosons. The lower graph

the limit whenkgT>%wo from Eq. (22) we see that the  gpoys that the differential conductance, for moderate couptings
temperature dependence of the differential conductance is s determined by the parameteyT/T. The plots were made
governed by the pre-factoe™ 91" o/*sT)/\[47g,kgT/h w, assuming a constant DOS in the leafls: 0 andeV=0.
and this is a strictlydecreasingunction of the temperature,
for reasonably values af;. Thus, there will never be an
upturn in the differential conductance when increasing the
temperature. This general behavior is not changed whes ) )
changed. Even an increased applied voltage, meaning that I'n conclusion we see that the polaronic transport thrpugh
more boson satellites contributes, was not able to induce & Single molecule or quantum dot does not clearly exhibit the
crossover. However, changifgdoes alter the amplitude of Crossover from coherent to incoherent transport expected for
the differential conductance, as seen in Fig. 7. the case of a periodic molecular crystal considered by
As mentioned above the temperature behavior is domitolstein!* The general behavior of the temperature depen-
nated byl'. If we put M=0 in Eq. (27) we can write the dence of the differential conductance is in langeaffected

VI. CONCLUSION

differential conductance as by the presence of the bosons. The temperature dependence
is mostly determined by the linewidtldue to coupling to the
e T (= 2¢ leads of the resonant energy level. The bosons produce side
[Creslm 0=~ ﬁf dy[f'(Y)Jrf' y+ ﬁ” bands corresponding to absorption and emission of bosons.
BY B We also stressed that because of the interaction of the po-
1 laron on the dot or molecule with the leads there are poten-
X (30) tially some very interesting problems in many-body
Y2+ (I'/kgT)? physic€®?* to be explored in the model system we have
wherelN“E(Fl+ I'3)/2. If we now takeep=0 orkgT<ey we considered.
will have that the differential conductance is umiversal
function of T/kgT, i.e, ACKNOWLEDGMENTS
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