700 research outputs found
Graphene field-effect transistors based on boron nitride gate dielectrics
Graphene field-effect transistors are fabricated utilizing single-crystal
hexagonal boron nitride (h-BN), an insulating isomorph of graphene, as the gate
dielectric. The devices exhibit mobility values exceeding 10,000 cm2/V-sec and
current saturation down to 500 nm channel lengths with intrinsic
transconductance values above 400 mS/mm. The work demonstrates the favorable
properties of using h-BN as a gate dielectric for graphene FETs.Comment: 4 pages, 8 figure
Thermal transport measurements of individual multiwalled nanotubes
The thermal conductivity and thermoelectric power of a single carbon nanotube
were measured using a microfabricated suspended device. The observed thermal
conductivity is more than 3000 W/K m at room temperature, which is two orders
of magnitude higher than the estimation from previous experiments that used
macroscopic mat samples. The temperature dependence of the thermal conductivity
of nanotubes exhibits a peak at 320 K due to the onset of Umklapp phonon
scattering. The measured thermoelectric power shows linear temperature
dependence with a value of 80 V/K at room temperature.Comment: 4 pages, figures include
User interface design for mobile-based sexual health interventions for young people: Design recommendations from a qualitative study on an online Chlamydia clinical care pathway
Background: The increasing pervasiveness of mobile technologies has given potential to transform healthcare by facilitating clinical management using software applications. These technologies may provide valuable tools in sexual health care and potentially overcome existing practical and cultural barriers to routine testing for sexually transmitted infections. In order to inform the design of a mobile health application for STIs that supports self-testing and self-management by linking diagnosis with online care pathways, we aimed to identify the dimensions and range of preferences for user interface design features among young people. Methods: Nine focus group discussions were conducted (n=49) with two age-stratified samples (16 to 18 and 19 to 24 year olds) of young people from Further Education colleges and Higher Education establishments. Discussions explored young people's views with regard to: the software interface; the presentation of information; and the ordering of interaction steps. Discussions were audio recorded and transcribed verbatim. Interview transcripts were analysed using thematic analysis. Results: Four over-arching themes emerged: privacy and security; credibility; user journey support; and the task-technology-context fit. From these themes, 20 user interface design recommendations for mobile health applications are proposed. For participants, although privacy was a major concern, security was not perceived as a major potential barrier as participants were generally unaware of potential security threats and inherently trusted new technology. Customisation also emerged as a key design preference to increase attractiveness and acceptability. Conclusions: Considerable effort should be focused on designing healthcare applications from the patient's perspective to maximise acceptability. The design recommendations proposed in this paper provide a valuable point of reference for the health design community to inform development of mobile-based health interventions for the diagnosis and treatment of a number of other conditions for this target group, while stimulating conversation across multidisciplinary communities
Formation energy and interaction of point defects in two-dimensional colloidal crystals
The manipulation of individual colloidal particles using optical tweezers has
allowed vacancies to be created in two-dimensional (2d) colloidal crystals,
with unprecedented possibility of real-time monitoring the dynamics of such
defects (Nature {\bf 413}, 147 (2001)). In this Letter, we employ molecular
dynamics (MD) simulations to calculate the formation energy of single defects
and the binding energy between pairs of defects in a 2d colloidal crystal. In
the light of our results, experimental observations of vacancies could be
explained and then compared to simulation results for the interstitial defects.
We see a remarkable similarity between our results for a 2d colloidal crystal
and the 2d Wigner crystal (Phys. Rev. Lett. {\bf 86}, 492 (2001)). The results
show that the formation energy to create a single interstitial is
lower than that of the vacancy. Because the pair binding energies of the
defects are strongly attractive for short distances, the ground state should
correspond to bound pairs with the interstitial bound pairs being the most
probable.Comment: 5 pages, 2 figure
Statistical mechanics of Floquet systems: the pervasive problem of near degeneracies
The statistical mechanics of periodically driven ("Floquet") systems in
contact with a heat bath exhibits some radical differences from the traditional
statistical mechanics of undriven systems. In Floquet systems all quasienergies
can be placed in a finite frequency interval, and the number of near
degeneracies in this interval grows without limit as the dimension N of the
Hilbert space increases. This leads to pathologies, including drastic changes
in the Floquet states, as N increases. In earlier work these difficulties were
put aside by fixing N, while taking the coupling to the bath to be smaller than
any quasienergy difference. This led to a simple explicit theory for the
reduced density matrix, but with some major differences from the usual time
independent statistical mechanics. We show that, for weak but finite coupling
between system and heat bath, the accuracy of a calculation within the
truncated Hilbert space spanned by the N lowest energy eigenstates of the
undriven system is limited, as N increases indefinitely, only by the usual
neglect of bath memory effects within the Born and Markov approximations. As we
seek higher accuracy by increasing N, we inevitably encounter quasienergy
differences smaller than the system-bath coupling. We therefore derive the
steady state reduced density matrix without restriction on the size of
quasienergy splittings. In general, it is no longer diagonal in the Floquet
states. We analyze, in particular, the behavior near a weakly avoided crossing,
where quasienergy near degeneracies routinely appear. The explicit form of our
results for the denisty matrix gives a consistent prescription for the
statistical mechanics for many periodically driven systems with N infinite, in
spite of the Floquet state pathologies.Comment: 31 pages, 3 figure
A new dromaeosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Wulansuhai Formation of Inner Mongolia, China
We describe a new dromaeosaurid theropod from the Upper Cretaceous Wulansuhai Formation of Bayan Mandahu, Inner
Mongolia. The new taxon, Linheraptor exquisitus gen. et sp. nov., is based on an exceptionally well-preserved, nearly
complete skeleton. This specimen represents the fifth dromaeosaurid taxon recovered from the Upper Cretaceous
Djadokhta Formation and its laterally equivalent strata, which include the Wulansuhai Formation, and adds to the known
diversity of Late Cretaceous dromaeosaurids. Linheraptor exquisitus closely resembles the recently reported Tsaagan
mangas. Uniquely among dromaeosaurids, the two taxa share a large, anteriorly located maxillary fenestra and a contact
between the jugal and the squamosal that excludes the postorbital from the infratemporal fenestra. These features suggest
a sister-taxon relationship between L. exquisitus and T. mangas, which indicates the presence of a unique dromaeosaurid
lineage in the Late Cretaceous of Asia. A number of cranial and dental features seen in L. exquisitus and T. mangas, and
particularly some postcranial features of L. exquisitus, suggest that these two taxa are probably intermediate in
systematic position between known basal and derived dromaeosaurids. The discovery of Linheraptor exquisitus is thus
important for understanding the evolution of some salient features seen in the derived dromaeosaurids
Age-specific effects of childhood body mass index on multiple sclerosis risk
OBJECTIVE: Higher body mass index (BMI) during early life is thought to be a causal risk factor for multiple sclerosis (MS). We used longitudinal Mendelian randomisation (MR) to determine whether there is a critical window during which BMI influences MS risk. METHODS: Summary statistics for childhood BMI (n ~ 28,000 children) and for MS susceptibility were obtained from recent large genome-wide association studies (GWAS) (n = 14,802 MS, 26,703 controls). We generated exposure instruments for BMI during four non-overlapping age epochs (< 3 months, 3 months–1.5 years, 2–5 years, and 7–8 years) and performed MR using the inverse variance weighted method with standard sensitivity analyses. Multivariable MR was used to account for effects mediated via later-life BMI. RESULTS: For all age epochs other than birth, genetically determined higher BMI was associated with an increased liability to MS: Birth [Odds Ratio (OR) 0.81, 95% Confidence Interval (CI) 0.50–1.31, Number of Single-Nucleotide Polymorphisms (N(SNPs)) = 7, p = 0.39], Infancy (OR 1.18, 95% CI 1.04–1.33, N(SNPs) = 18, p = 0.01), Early childhood (OR 1.31, 95% CI 1.03–1.66, N(SNPs) = 4, p = 0.03), Later childhood (OR 1.34, 95% CI 1.08–1.66, N(SNPs) = 4, p = 0.01). Multivariable MR suggested that these effects may be mediated by effects on adult BMI. CONCLUSION: We provide evidence using MR that genetically determined higher BMI during early life is associated with increased MS risk. This effect may be driven by shared genetic architecture with later-life BMI. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00415-022-11161-4
Electronic compressibility of layer polarized bilayer graphene
We report on a capacitance study of dual gated bilayer graphene. The measured
capacitance allows us to probe the electronic compressibility as a function of
carrier density, temperature, and applied perpendicular electrical displacement
D. As a band gap is induced with increasing D, the compressibility minimum at
charge neutrality becomes deeper but remains finite, suggesting the presence of
localized states within the energy gap. Temperature dependent capacitance
measurements show that compressibility is sensitive to the intrinsic band gap.
For large displacements, an additional peak appears in the compressibility as a
function of density, corresponding to the presence of a 1-dimensional van Hove
singularity (vHs) at the band edge arising from the quartic bilayer graphene
band structure. For D > 0, the additional peak is observed only for electrons,
while D < 0 the peak appears only for holes. This asymmetry that can be
understood in terms of the finite interlayer separation and may be useful as a
direct probe of the layer polarization
- …