1,470 research outputs found

    Experimental Demonstration of >230{\deg} Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces

    Get PDF
    Metasurfaces offer significant potential to control far-field light propagation through the engineering of amplitude, polarization, and phase at an interface. We report here phase modulation of an electronically reconfigurable metasurface and demonstrate its utility for mid-infrared beam steering. Using a gate-tunable graphene-gold resonator geometry, we demonstrate highly tunable reflected phase at multiple wavelengths and show up to 237{\deg} phase modulation range at an operating wavelength of 8.50 {\mu}m. We observe a smooth monotonic modulation of phase with applied voltage from 0{\deg} to 206{\deg} at a wavelength of 8.70 {\mu}m. Based on these experimental data, we demonstrate with antenna array calculations an average beam steering efficiency of 50% for reflected light for angles up to 30{\deg}, relative to an ideal metasurface, confirming the suitability of this geometry for reconfigurable mid-infrared beam steering devices

    Evaluation of High Performance Fortran through Application Kernels

    Get PDF
    Since the definition of the High Performance Fortran (HPF) standard, we have been maintaining a suite of application kernel codes with the aim of using them to evaluate the available compilers. This paper presents the results and conclusions from this study, for sixteen codes, on compilers from IBM, DEC, and the Portland Group Inc. (PGI), and on three machines: a DEC Alphafarm, an IBM SP-2, and a Cray T3D. From this, we hope to show the prospective HPF user that scalable performance is possible with modest effort, yet also where the current weaknesses lay

    Exploration of Emerging HPCN Technologies for Web-Based Distributed Computing

    Get PDF
    The surge in the popularity of the World Wide Web (WWW) has corresponded to a decreasing market for specialised high performance computers. This paper discusses how, by making use of technology developed from the broader end of the computing pyramid, much of the past decade\u27s work in distributed computing can be realised in the context of the larger WWW market. Not only do these new technologies offer fresh possibilities, but their pace of development is unlikely to be matched by the traditional high performance research community. A motivating application, discussions of the pertinent emerging technologies, and NPAC\u27s investigations of them, will be presented

    Characterization of carbon nanotubes synthesized from hydrocarbon-rich flame

    Get PDF
    The present study focuses on the characterization of carbon nanotubes (CNTs) synthesized from flame under an atmospheric condition. A laminar flame burner was utilized to establish a rich premixed propane/air flame at the equivalence ratio Ί = 1.8-2.2. The flame was impinged on a stainless steel wire mesh coated with nickel (Ni) catalyst to grow CNTs. Distribution and yield of the CNTs on the substrate were quantified. Carbon nanotubes formed on the substrate were harvested and characterized using scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TGA). The FESEM micrograph showed that the CNTs produced were in disarray. The synthesized CNTs were an average of 50-60 nm in diameter while the length of the tubes was in the order of microns. TGA analysis showed that 75% of CNTs were present in the sample and the oxidation temperature was 510°C

    3D-Patterned Inverse-Designed Mid-Infrared Metaoptics

    Full text link
    Modern imaging systems can be enhanced in efficiency, compactness, and application through introduction of multilayer nanopatterned structures for manipulation of light based on its fundamental properties. High transmission efficiency multispectral imaging is surprisingly elusive due to the commonplace use of filter arrays which discard most of the incident light. Further, most cameras do not leverage the wealth of information in polarization and spatial degrees of freedom. Optical metamaterials can respond to these electromagnetic properties but have been explored primarily in single-layer geometries, limiting their performance and multifunctional capacity. Here we use advanced two-photon lithography to realize multilayer scattering structures that achieve highly nontrivial optical transformations intended to process light just before it reaches a focal plane array. Computationally optimized multispectral and polarimetric sorting devices are fabricated with submicron feature sizes and experimentally validated in the mid-infrared. A final structure shown in simulation redirects light based on its angular momentum. These devices demonstrate that with precise 3-dimensional nanopatterning, one can directly modify the scattering properties of a sensor array to create advanced imaging systems.Comment: 32 pages, 4 main figures, 12 supplementary figure

    A Review of Commercial and Research Cluster Management Software

    Get PDF
    In the past decade there has been a dramatic shift from mainframe or ‘host-centric’ computing to a distributed ‘client-server’ approach. In the next few years this trend is likely to continue with further shifts towards ‘network-centric’ computing becoming apparent. All these trends were set in motion by the invention of the mass-reproducible microprocessor by Ted Hoff of Intel some twenty-odd years ago. The present generation of RISC microprocessors are now more than a match for mainframes in terms of cost and performance. The long-foreseen day when collections of RISC microprocessors assembled together as a parallel computer could outperform the vector supercomputers has finally arrived. Such high-performance parallel computers incorporate proprietary interconnection networks allowing low-latency, high bandwidth inter-processor communications. However, for certain types of applications such interconnect optimization is unnecessary and conventional LAN technology is sufficient. This has led to the realization that clusters of high-performance workstations can be realistically used for a variety of applications either to replace mainframes, vector supercomputers and parallel computers or to better manage already installed collections of workstations. Whilst it is clear that ‘cluster computers’ have limitations, many institutions and companies are exploring this option. Software to manage such clusters is at an early stage of development and this report reviews the current state-of-the-art. Cluster computing is a rapidly maturing technology that seems certain to play an important part in the ‘network-centric’ computing future

    Cluster Computing Review

    Get PDF
    In the past decade there has been a dramatic shift from mainframe or ‘host−centric’ computing to a distributed ‘client−server’ approach. In the next few years this trend is likely to continue with further shifts towards ‘network−centric’ computing becoming apparent. All these trends were set in motion by the invention of the mass−reproducible microprocessor by Ted Hoff of Intel some twenty−odd years ago. The present generation of RISC microprocessors are now more than a match for mainframes in terms of cost and performance. The long−foreseen day when collections of RISC microprocessors assembled together as a parallel computer could out perform the vector supercomputers has finally arrived. Such high−performance parallel computers incorporate proprietary interconnection networks allowing low−latency, high bandwidth inter−processor communications. However, for certain types of applications such interconnect optimization is unnecessary and conventional LAN technology is sufficient. This has led to the realization that clusters of high−performance workstations can be realistically used for a variety of applications either to replace mainframes, vector supercomputers and parallel computers or to better manage already installed collections of workstations. Whilst it is clear that ‘cluster computers’ have limitations, many institutions and companies are exploring this option. Software to manage such clusters is at an early stage of development and this report reviews the current state−of−the−art. Cluster computing is a rapidly maturing technology that seems certain to play an important part in the ‘network−centric’ computing future

    Near-field intensity pattern at the output of silica-based graded-index multimode fibers under selective excitation with a single-mode fiber

    Full text link
    Abstract: Selective excitation of graded-index multimode fibers (GIMMFs) with a single-mode fiber (SMF) has gained increased interest for telecommunication applications. It has been proposed as a way to enhance the transmission bandwidth of GI-MMF links and/or create parallel communication channels over the same GI-MMF. Although the effect of SMF excitation on the transmission bandwidth has been investigated, its impact on the near-field intensity pattern at the output face of the GI-MMF has not been systematically addressed. We have carried out an analysis of the near-field intensity pattern at the output face of silica-based GI-MMFs excited by a radially offset SMF. Simulation results exhibit all of the features displayed by experimental ones. It turns out that differential mode attenuation and delay, full intra-group mode mixing, and small deviations in the refractive index profile of the GI-MMF do not affect the overall shape of the near-field intensity, which is determined by the radial offset of the input SMF. This can be exploited in mode group diversity multiplexing links. The effect of defects in the refractive index profile, such as a central dip or peak, is also examined
    • 

    corecore