
Syracuse University Syracuse University

SURFACE SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1997

Evaluation of High Performance Fortran through Application Evaluation of High Performance Fortran through Application

Kernels Kernels

Hon W. Yau
Syracuse University, Northeast Parallel Architectures Center

Geoffrey C. Fox
Syracuse University, Northeast Parallel Architectures Center

Ken Hawick
Syracuse University, Northeast Parallel Architectures Center

Follow this and additional works at: https://surface.syr.edu/npac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Yau, Hon W.; Fox, Geoffrey C.; and Hawick, Ken, "Evaluation of High Performance Fortran through
Application Kernels" (1997). Northeast Parallel Architecture Center. 74.
https://surface.syr.edu/npac/74

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized administrator
of SURFACE. For more information, please contact surface@syr.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215689444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/74?utm_source=surface.syr.edu%2Fnpac%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Proc. HPCN, Vienna 1997, Technical Note DHPC-005Evaluation of High Performance Fortran throughApplication KernelsH W Yau?, G C Fox and K A Hawick??Northeast Parallel Architectures CenterSyracuse University111 College PlaceSyracuse NY 13244-4100USAE-mail: hwyau@epcc.ed.ac.uk & gcf@npac.syr.edu &khawick@cs.adelaide.edu.auPhone: +44 131 650 5957Fax: +44 131 650 6555URL: http://www.npac.syr.edu/hpfa/Abstract. Since the de�nition of the High Performance Fortran (HPF)standard, we have been maintaining a suite of application kernel codeswith the aim of using them to evaluate the available compilers. This pa-per presents the results and conclusions from this study, for sixteen codes,on compilers from IBM, DEC, and the Portland Group Inc. (PGI), and onthree machines: a DEC Alphafarm, an IBM SP-2, and a Cray T3D. Fromthis, we hope to show the prospective HPF user that scalable performanceis possible with modest e�ort, yet also where the current weaknesses lay.1 IntroductionIn this paper, we shall �rst motivate the use of the High Performance Fortranlanguage as a means of exploiting the parallelism within a program. We shall thenclarify the purpose of the NPAC HPF Applications suite, and explain the methodol-ogy by which these code have been benchmarked. In essence, we shall be comparingthe performance of the codes against the ideal of a perfectly scaling code with nooverhead from the use of the HPF language. Finally, a discussion will be madeon how near or far the compilers and code tested are in meeting this aggressivestandard, and the possible reasons why.2 The High Performance Fortran LanguageHigh Performance Fortran is a de�nition agreed on by vendors and users on ex-ploiting the data parallelism already implicit in the Fortran 90 language. The aimis to provide additional constructs with which the user and compiler can produce ascalable executable, with performances comparable to hand-tuned message passingcode. The principle means by which this is achieved is through the use of compilerdirectives, statements which a traditional Fortran compiler would ignore as a com-mented line, but which an HPF compiler would use to ascertain how data arrays? Current address: Edinburgh Parallel Computing Centre, University of Edinburgh, Ed-inburgh EH9{3JZ, Scotland/UK.?? Current address: Department of Computer Science, University of Adelaide, South Aus-tralia 5005, Australia.

are to be distributed and how the code may be executed in parallel [THPFF94]. Inaddition, HPF has introduced several new features into the Fortran language; themost obvious of which are new intrinsic functions (mostly through the HPF LIBRARYmodule) and the FORALL statement/construct for more generalized array expressionsthan are possible with Fortran 90 array syntax and WHERE statement/construct. Itis interesting to note that at present it appears that some of these HPF languagefeatures are currently being considered for inclusion in the forthcoming Fortran 95standard.The HPF approach has several strengths as a means of parallelizing existing code[RYHF96]. First of all, the HPF computation model has been de�ned so as to have asingle execution thread. Whilst this does present problems of e�ciency in ensuringall non-distributed data are kept identical across all processors, it also means thatany changes from HPF statements are by de�nition benign with respect to the code'sbehaviour when compiled for one or for many processors. This should be contrastedwith the message-passing case where it is more usual to have separate parallel andserial versions, which the developer is then obliged to individually maintain.The other major attribute of HPF is that it is a standard, designed and agreed onby major vendors and users. This protection of software investment means that, likethe MPI standard for message passing [TMPIF94], users can compile the same codefor di�erent platforms ranging from a single workstation to a dedicated massivelyparallel processing machine. Whilst the idea of data-parallel languages have beendiscussed since the late 1960's[Ric95], HPF is the �rst |and thus far only| portablestandard available for consideration.3 The High Performance Fortran Applications SuiteThe NPAC HPF Applications (HPFA) suite is a set of programs collected anddeveloped over a number of years to provide feedback on available HPF compilers.From this, one would be able to provide quantitative details on the strengths andweaknesses of these compilers.All the HPFA kernel suite of codes benchmarked have had one of two origins:they were either ports from existing Fortran programs, or they were written fromscratch. Where the codes were originally Fortran 77 this usually required extensiverewriting to make use of the HPF array data parallelism syntax. However, wherethe codes originated from implementations for machines such as the MasPar or theThinking Machines CM series, the work required was usually a simple one-to-onereplacement of function names or language feature.The codes benchmarked for this paper, and the language features & intrinsicfunctions which they exploit to express their parallelism are:1. Solution of 2-dimensional Poisson equation by the alternating direct implicit(ADI) method: array syntax, TRANSPOSE().2. 2-dimensional fast Fourier transformation: INDEPENDENT do loops, passing ofarray sections into subroutines, TRANSPOSE().3. Rewritten HPF version of the NASA NAS embarrassingly parallel benchmark[BBLEds93]: WHERE, array syntax.4. 2-dimensional convolution: INDEPENDENT do loops, passing of array sections intosubroutines, TRANSPOSE().5. Generation of random numbers with Gaussian deviates by the Box-Muller al-gorithm: FORALL, MERGE()E, array syntax.6. 2-dimensional spanning percolation: FORALL, CSHIFT(), WHERE, MERGE(), arraysyntax.7. Q-state Potts model simulation: MERGE(), CSHIFT(), FORALL, array syntax.

8. Solution of the Cahn-Hilliard-Cook �eld equation: CSHIFT(), array syntax.9. Gaussian elimination with partial pivoting: FORALL, SUM(), MAXLOC(), arraysyntax.10. Direct N-Body simulation: CSHIFT(), array syntax.11. Bubble sort algorithm: WHERE, EOSHIFT(), array syntax.12. Wavelet image processing: FORALL, array syntax.13. Binomial stochastic options pricing simulation: EOSHIFT(), WHERE, SUM, arraysyntax.14. Cholesky factorization: FORALL, SPREAD(), SUM(), array syntax.15. Hough image transformation: COUNT SCATTER(), FORALL, array syntax.16. Hop�eld neural network simulation: MATMUL(), MAXVAL, DOT PRODUCT, WHERE,array syntax.Where each code is typically under 500 lines in length. The distribution of thearrays for most of these problems are along one dimension, and typically block orcyclic-1. Where distributed arrays are passed into subroutines, descriptive mappingis used to assure the compiler of the correct data distribution. The reasons for thesesomewhat conservative decisions are largely historical, when it was felt completeand e�cient HPF implementation would not have been immediately available. In asimilar vein, whilst the intent is to cover as wide a range of di�erent applicationsas is feasible, a balance had to be made in using codes which could be parallelized,and which would �t into the present HPF regular data framework.These codes are also available from the NPAC website, for use by anyone to testtheir HPF implementation [NPA96].3.1 Compilers and PlatformsFor the benchmarking, the following compilers and platforms con�gurations wereavailable, executing on 1,2,4 and 8 processors.{ Portland Group Inc. PGHPF v2.1-1 compiler on an IBM SP-2, installed July1996. This is a largely complete HPF implementation, and none of the missingfeatures had any impact on the HPFA codes.{ IBM XLHPF v1.1 compiler on an IBM SP-2, installed March 1996. This is animplementation of the subset speci�cation of HPF, plus some other features.{ DEC Fortran 90/POE v4.0 compiler on a DEC Alphafarm connected via a Gi-gaswitch, installed on February 1996. This is a full implementation of the HPFlanguage, albeit with certain parallelism features disabled.{ PGI PGHPF v2.1 compiler on a Cray T3D, installed June 1996. As for the IBMimplementation, this is a largely complete HPF implementation.In addition, Fortran 90 single processor runs were made so as to ascertain theadditional overhead of using HPF on each of these machines:{ PGI PGHPF on the IBM SP-2 without the `-pghpf' execution ag, for com-parisons with the PGI-PGHPF IBM SP-2 runs.{ IBM XLF90 for comparisons with the IBM XLHPF runs.{ DEC Fortran 90 without the `-wsf' parallel software environment compiler ag,for comparisons with the DEC HPF runs.{ Cray CF90 for comparisons with the PGI-PGHPF Cray T3D runs.All three machines examined are distributed memory multiprocessor machines.It is generally expected that the HPF language will perform more closely to hand-written message passing codes for shared memory (or virtual-shared memory, as

in the case of the Hewlett-Packard/Convex Exemplar series) memory architecturemachines.In all cases, at least eight timings were made at each con�guration, and theminimum execution times used. These timings referred to the wall-clock executiontime, as provided by the Fortran 90 `SYSTEM CLOCK()' intrinsic function.The hardware for the IBM SP-2 runs were made courtesy of the Cornell TheoryCenter, the DEC Alphafarm via the Northeast Parallel Architectures Center, andthe Cray T3D via the Edinburgh Parallel Computing Centre.4 Benchmark ResultsThe results presented are an attempt to show each code's behaviour with respectto the number of participating processors. The information we wish to extract arethe overhead induced by the use of HPF over that from an Fortran 90 execution ona single processor, and the subsequent scaling in the execution times. In addition,timing calls have been inserted into the codes so as to determine the times spenton purely computational tasks and on combined communication & computation|the latter as it is sometimes impossible to separate the times spent on commu-nications and computation within a HPF program statement or intrinsic function.The graphical pro�ler from the PGI compiler was used to determine the parts ofthe code which contain communications, and the observations fed back into theprograms by inserting explicit calls to timing routines around the areas of interest.This methodology obviously su�ers from extrapolating the PGI implementation tothose from the other vendors, but since we have not seen any obvious inaccuracies inthe PGI pro�ler's report on which lines of code are dependent on communications,we believe this indeed provides a realistic picture.From these data, it would be possible to indirectly determine the performanceof these codes compared to the (usually unobtainable) ideal situation of:{ No di�erence in execution times between the serial Fortran 90 and the HPFcode on one processor.{ The reciprocal of the execution times scale down linearly with the number ofprocessors.Within the parallel computing community, the question often asked is how anHPF code compares with a functionally equivalent hand-coded message passing ver-sion. Writing |and presumably optimizing| message passing calls into the eigh-teen codes in this study would be the ideal means by which to answer this question.However, this was deemed infeasible under the available timeframe and instead theresults presented here will compare the performance with the ideal situation listedabove as the metric on `how good' were the compilers tested.Table 1 shows the speed-up �gures for the HPF implementations by PGI andIBM on an IBM SP-2. Speed-up here is de�ned as the execution time taken bya particular con�guration divided by the time taken by the one-processor HPFexecution time. As a guide to the overhead of using HPF, this is also done for theFortran 90 version of the code.An identical exercise is done in table 2 for the HPF implementations by DEC onan eight workstation Alphafarm, and PGI on a Cray T3D. It should be noted thatthe Cray T3D Fortran 90 runs were performed with the Cray Fortran 90 compiler,rather than the PGI product; mainly because unlike the case with the IBM SP-2,it was not immediately obvious how to `switch o�' the HPF features of the PGIcompiler on the T3D.Finally, table 3 gives the wall clock execution times of the four con�gurationsexamined on the sixteen HPFA codes, on a single processor running the HPF code.

HPFA Code PGHPF & IBM SP-2 XLHPF & IBM SP-2PGHPF PGHPF XLF90 XLHPF0001 ADI 1.6 1.4,1.9,2.4 1.3 1.9,3.6,6.80003 2D FFT 0.5 2.0,3.9,7.6 1.6 1.0,0.9,0.80004 NAS EP 1.0 2.3,4.7,9.0 0.9 2.1,4.2,8.30008 2D Convolution 0.5 2.0,3.8,7.5 1.7 1.0,0.9,0.80009 Box-Muller 1.0 2.0,2.2,4.9 1.0 1.7,2.8,3.90011 2D-Percolation 1.5 1.8,1.5,2.2 1.3 1.7,2.6,3.50013 Potts Model 1.0 1.8,2.9,3.9 { {0014 Cahn-Hilliard 1.7 2.0,3.8,7.2 1.6 2.0,3.9,7.50022 Gaussian Factor 0.3 1.8,3.1,3.9 2.5 1.9,3.3,5.10025 Direct N-Body 1.4 2.0,3.8,7.3 0.9 2.0,3.8,7.10039 Bubble Sort 0.9 1.9,3.4,5.4 1.0 1.7,3.1,5.50041 Wavelet 1.0 2.0,3.7,7.3 1.4 2.0,3.9,7.80048 Options Pricing 1.0 2.0,3.8,7.2 { {0049 Cholesky Factor 1.2 1.9,4.3,8.3 1.2 1.9,3.8,7.00052 Hough Transform 1.8 1.6,2.5,3.7 { {0053 Hop�eld Network 1.1 0.9,0.6,0.4 0.8 0.5,0.7,0.8Table 1. Speed-up results for the PGI PGHPF and IBM XLHPF/XLF90 compilers on theIBM SP-2. The numbers presented here are speed-ups with respect to the one-processorHPF codes, for the Fortran 90 serial run, and the 2,4 & 8 processors HPF runs; by de�nitionthe speed-up for the one processor HPF runs is `1.0'. The con�guration(s) which gave thebest speed-up has been highlighted. The dash represents where the HPF compiler wasunable to compile the code, whether due to documented limitations or due to unknowncompilation errors.These provide an indication of the spread in execution times amongst the di�erentproducts.The following subsections x4.1{4.4 will describe the behaviour of the HPFA codeson the compiler and hardware con�gurations listed in x3.1, as well as elaboratingon the results given in tables 1{3.4.1 PGI PGHPF Timings on the IBM SP-2Of the sixteen codes examined, eight displayed a speed-up of 7.0 or higher at eightprocessors, with six also having a low Fortran 90 to HPF overhead. Moreover, two ofthe codes had a speed-up higher than 8.0, due to better cache hits with the smallerproblem size given to each processor. From these results, one may infer that thefollowing characteristics are implemented well by the PGHPF compiler on the IBMSP-2: INDEPENDENT do loops, WHERE mask operations with no communications, sim-ple near-neighbour CSHIFT() operations, and the SUM(), TRANSPOSE() & SPREAD()functions. On the otherhand, three codes performed noticeably badly. The featureswhich appear to have caused problems are: masked CSHIFT() operations with com-munications, and MATMUL() with communications.On the whole, this con�guration performs well on codes with little or interpro-cessor communications. Although there is the exception of the ADI code, whichbeing mostly embarrassingly parallel, should also have scaled well.4.2 IBM XLHPF & XLF90 Timings on the IBM SP-2The IBM XLHPF is a subset-HPF compiler, and the major e�ect on the HPFAcodes have been the inability to make use of the `HPF LIBRARY' intrinsic functions,

HPFA Code DEC HPF & Alphafarm PGHPF & Cray T3DF90 F90 & WSF CF90 PGHPF0001 ADI 1.5 0.3,0.5,0.9 1.3 1.3,1.5,1.60003 2D FFT 1.3 1.0,0.9,0.5 4.0 2.0,4.0,7.80004 NAS EP 1.4 0.1,0.6,0.6 0.6 2.0,3.9,7.00008 2D Convolution 0.6 0.9,0.8,0.5 3.6 2.0,4.0,7.90009 Box-Muller 1.2 0.4,0.4,1.2 1.2 2.0,4.0,7.70011 2D-Percolation 1.1 0.9,0.6,1.2 0.8 1.7,2.5,2.70013 Potts Model 0.7 0.9,1.3,1.3 0.8 1.5,1.6,1.30014 Cahn-Hilliard 1.8 1.0,2.0,3.7 1.1 2.0,3.6,5.90022 Gaussian Factor 0.6 0.5,0.6,0.5 1.5 1.6,1.9,1.30025 Direct N-Body 0.9 0.1,0.2,0.4 1.2 1.9,3.0,3.80039 Bubble Sort 0.8 0.2,0.4,0.6 0.9 1.3,1.9,1.70041 Wavelet 1.2 0.4,0.7,1.4 0.7 2.0,3.9,7.50048 Options Pricing 0.9 0.8,1.6,2.7 0.7 1.9,3.4,5.00049 Cholesky Factor 1.4 1.5,2.6,4.2 0.8 1.9,3.2,4.50052 Hough Transform 11.0 0.3,0.5,0.9 4.6 1.4,1.9,3.10053 Hop�eld Network 3.5 0.3,0.3,0.3 0.6 1.1,1.1,0.6Table 2. Speed-up results for the DEC F90 & HPF on an eight-processor Alphafarm andCray CF90 & PGI PGHPF on a Cray T3D. The numbers presented here are speed-upswith respect to the one-processor HPF codes, for the Fortran 90 serial run, and the 2,4 &8 processors HPF runs; by de�nition the speed-up for the one processor HPF runs is `1.0'.The con�guration(s) which gave the best speed-up for each compiler-machine have beenhighlighted.as used by the Hough transformation code. In addition, it was found that two othercodes caused unknown compile-time errors.Of the remaining thirteen codes, �ve codes had a speed-up of 7.0 or better ateight processors, with two codes also having a low Fortran 90 to HPF overheads.The features which the XLHPF compiler implemented well appear to be: WHEREmask operations with no communications, simple near-neighbour CSHIFT(), andthe SUM(), TRANSPOSE() and SPREAD() intrinsics. The features which performedbadly are: INDEPENDENT do loops which called pure subroutines with array sections,and MATMUL() with interprocessor communications.As with the PGI PGHPF on the IBM SP-2, the IBM XLHPF compiler appearto perform best on embarrassingly parallel problems |it notably scaled better onthe ADI code than the PGHPF compiler. However, it still su�ers from being subsetHPF, and the implementation of INDEPENDENT do loops is still lacking.4.3 DEC HPF & Fortran 90 Timings on the DEC AlphafarmDEC was the �rst vendor to o�er a syntactically complete HPF compiler, but onthe system benchmarked it had the most disappointing performance. Perhaps themost telling statistics is that of the sixteen codes, nine had their single processorFortran 90 timings comparable or better than the eight processor HPF runs. Of theother seven codes, three had a speed-up �gure above 2.0 with the rest deliveringperformances comparable to that from a single processor. In mitigation with two ofthe codes, it should be mentioned that the INDEPENDENT directive does not functionwith the compiler release which was used.4.4 PGI PGHPF Timings on the Cray T3DThe Cray T3D is generally acknowledged as having a superior communications net-work to that of the IBM SP-2, in particular with a better latency. However, this

HPFA Code PGHPF/SP-2 XLHPF/SP-2 DEC HPF/Alpha PGHPF/T3DADI 32.1 71.6 68.1 77.62D FFT 2.8 3.6 2.5 8.9NAS EP 25.8 71.9 73.2 46.62D Convolution 8.6 11.0 7.2 25.7Box-Muller 9.5 18.2 33.5 18.22D-Percolation 13.6 52.0 61.8 29.8Potts Model 24.1 { 113.0 72.9Cahn-Hilliard 39.5 173.5 211.4 106.7Gaussian Factor 9.1 33.9 29.1 27.7Direct N-Body 57.0 205.9 207.5 202.9Bubble Sort 36.2 113.4 108.3 99.5Wavelet 8.5 33.7 36.6 23.4Options Pricing 36.0 { 122.4 79.3Cholesky Factor 52.6 131.9 154.9 92.6Hough Transform 4.5 { 85.2 6.9Hop�eld Network 4.4 7.9 105.0 11.4Table 3. Wall-clock execution times in seconds for the PGI PGHPF compiler on a IBMSP-2, the IBM XLHPF/XLF90 compiler on a IBM SP-2, the DEC HPF compiler on aDEC Alphafarm, and the PGI PGHPF compiler on a Cray T3D, for a single processorHPF run.does not appear to be reected in its performance with respect to the SP-2 port:�ve codes obtained a speed-up of 7.0 or better at eight processors and these codesare essentially embarrassingly parallel, with little interprocessor communications|although the aforementioned case with the ADI code in x4.1 again shows disap-pointing speed-up. The codes where the IBM SP-2 port bettered the Cray T3Dversion are actually those with substantial near-neighbour communications, namelyfrom CSHIFT() operations. On the otherhand, this port contains the same featuresas the SP-2 version, in particular o�ering the users the option of expressing theircode's parallelism with the INDEPENDENT do-loop directive.5 DiscussionThis exercise has demonstrated that today one can write HPF codes which scaleswell and have acceptable Fortran 90 to HPF latencies. In this context, it would bedi�cult to envisage a message-passing program outperforming such codes. However,currently it would appear that such codes should preferably either have few inter-processor communications, or have them as simple operations such as CSHIFT() andSPREAD() which the compiler can easily optimize.Of the HPFA codes examined which did not scale well, these were generallydue either to obvious gaps in the implementations (e.g., full INDEPENDENT do loopsin the DEC and IBM compilers), or to comparatively complicated communicationpatterns (e.g., MATMUL() on non-local data, masked CSHIFT() operations). Thatpro�lers are now available to determine these problematic parts of the code was ofmajor assistance in this report. However, more information could still be given tothe user to optimise their HPF codes: such as for when arrays have been remapped,or if temporary arrays have been created, or if computations have been unnecessarilyduplicated.In conclusion, we have demonstrated that present day compilers of the HPFlanguage are capable of good scalability and low latencies. Nonetheless it is veryeasy to construct codes which do not scale well, and for these cases the user must be

provided with the information needed to identify and perhaps bypass these bottle-necks. This is more pertinent with HPF programming than with message-passing,where the ease of coding and the freedom to re-express a given computation is muchgreater.6 AcknowledgementsThe authors of this paper wishe to thank the following people for their contributionto the NPAC HPFA project: G Cheng, P D Coddington, D Leskiwd, M McMahon,S Ranka and G Robinson.References[BBLEds93] D Bailey, J Barton, T Lasinski, and H Simon (Editors). The NAS Parallelbenchmarks. NASA Ames, NASA Technical Memorandum 103863, July1993.[NPA96] Northeast Parallel Architectures Center HPF Application Kernels.http://www.npac.syr.edu/hpfa/, November 1996.[Ric95] H Richardson. EPCC Technology Watch Report: High Performance Fortran.Edinburgh Parallel Computing Centrehttp://www.epcc.ed.ac.uk/epcc-tec/documents/, v1.2 September 1995.[RYHF96] S Ranka, H W Yau, K A Hawick, and G C Fox. High Performance Fortranfor SPMD Programming: An Applications Overview. NPAC SCCS Report,http://www.npac.syr.edu/hpfa/Papers/HPFforSPMD/, November 1996.[THPFF94] The High Performance Fortran Forum. High Performance FortranLanguage Speci�cation, v 1.1. Rice University, Houston Texashttp://www.crpc.rice.edu/HPFF/home.html, November 1994.[TMPIF94] The Message Passing Interface Forum. MPI: A Message-Passing InterfaceStandard. University of Tennessee, Knoxville, May 1994.

	Evaluation of High Performance Fortran through Application Kernels
	Recommended Citation

	tmp.1285859524.pdf.RfmUr

