456 research outputs found
The relation between apical periodontitis and root filled teeth in patients with periodotal treatment need
Longitudinal study on the influence of Nd:YAG laser irradiation on microleakage associated of two filling techniques.
Objective: This study investigates the effects of Nd:YAG laser irradiation on apical and coronal seals, when used prior to two root canal filling techniques.
Background Data: Limited information exists regarding the effects of morphologic changes to dentin walls following Nd: YAG laser irradiation on the sealing ability of root fillings.
Methods: Two hundred forty teeth were analyzed by observing coronal and apical leakage of Indian ink (DL), and 60 were analyzed for through-and-through leakage using the fluid transport model (FTM). The Nd: YAG laser parameters were 1.5W, 100mJ, and 15Hz (four times for 5s at 20s intervals). Each group consisted of a lased and a nonlased subgroup: each subgroup had root fills done by either cold lateral condensation (CLC) or hybrid condensation (HC). Leakage was assessed after 48 h, and then at 1, 6, and 12 months. The DL group was divided into four groups of 15 teeth for each evaluation point. Through-and-through leakage (L in microliters/day) was measured for 48h under a pressure of 1.2 atm using FTM, and recorded as L = 0 (L1), 0 10 (L3).
Results: Apical and coronal dye leakage was observed in all groups. Significant differences (p < 0.05) in apical leakage were found between HC and HC + Nd after 1, 6, and 12 months, and between CLC and CLC + Nd at 6 and 12 months. No significant differences were found between laser-irradiated and non-laser-irradiated groups with FTM.
Conclusion: Pulsed Nd: YAG laser irradiation following root canal preparation may reduce apical leakage in association with hybrid gutta-percha condensation
Measurement of the polarized structure functions g1, b1 and the polarized quark distributions q at HERMES
Q(2) dependence of nuclear transparency for exclusive rho(0) production
Exclusive coherent and incoherent electroproduction of the rho(0) meson from H-1 and N-14 targets has been studied at the HERMES experiment as a function of coherence length (l(c)), corresponding to the lifetime of hadronic fluctuations of the virtual photon, and squared four-momentum of the virtual photon (-Q(2)). The ratio of N-14 to H-1 cross sections per nucleon, called nuclear transparency, was found to increase (decrease) with increasing l(c) for coherent (incoherent) rho(0) electroproduction. For fixed l(c), a rise of nuclear transparency with Q(2) is observed for both coherent and incoherent rho(0) production, which is in agreement with theoretical calculations of color transparency
Evidence for quark-hadron duality in the proton spin asymmetry A(1)
Spin-dependent lepton-nucleon scattering data have been used to investigate the validity of the concept of quark-hadron duality for the spin asymmetry A(1). Longitudinally polarized positrons were scattered off a longitudinally polarized hydrogen target for values of Q(2) between 1.2 and 12 GeV2 and values of W-2 between 1 and 4 GeV2. The average double-spin asymmetry in the nucleon resonance region is found to agree with that measured in deep-inelastic scattering at the same values of the Bjorken scaling variable x. This finding implies that the description of A(1) in terms of quark degrees of freedom is valid also in the nucleon resonance region for values of Q(2) above 1.6 GeV2
A study of fragmentation processes in the HERMES experiment using a ring imaging Cerenkov detector
The HERMES Dual-Radiator Ring Imaging Cerenkov Detector
The construction and use of a dual radiator Ring Imaging Cerenkov(RICH)
detector is described. This instrument was developed for the HERMES experiment
at DESY which emphasizes measurements of semi-inclusive deep-inelastic
scattering. It provides particle identification for pions, kaons, and protons
in the momentum range from 2 to 15 GeV, which is essential to these studies.
The instrument uses two radiators, C4F10, a heavy fluorocarbon gas, and a wall
of silica aerogel tiles. The use of aerogel in a RICH detector has only
recently become possible with the development of clear, large homogeneous and
hydrophobic aerogel. A lightweight mirror was constructed using a newly
perfected technique to make resin-coated carbon-fiber surfaces of optical
quality. The photon detector consists of 1934 photomultiplier tubes for each
detector half, held in a soft steel matrix to provide shielding against the
residual field of the main spectrometer magnet.Comment: 25 pages, 23 figure
Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface
The nuclear polarization of molecules formed by recombination
of nuclear polarized H atoms on the surface of a storage cell initially coated
with a silicon-based polymer has been measured by using the longitudinal
double-spin asymmetry in deep-inelastic positron-proton scattering. The
molecules are found to have a substantial nuclear polarization, which is
evidence that initially polarized atoms retain their nuclear polarization when
absorbed on this type of surfac
Subleading-twist effects in single-spin asymmetries in semi-inclusive deep-inelastic scattering on a longitudinally polarized hydrogen target
Single-spin asymmetries in the semi-inclusive production of charged pions in
deep-inelastic scattering from transversely and longitudinally polarized proton
targets are combined to evaluate the subleading-twist contribution to the
longitudinal case. This contribution is significantly positive for (\pi^+)
mesons and dominates the asymmetries on a longitudinally polarized target
previously measured by \hermes. The subleading-twist contribution for (\pi^-)
mesons is found to be small
- …
