1,311 research outputs found

    Bounded LTL Model Checking with Stable Models

    Full text link
    In this paper bounded model checking of asynchronous concurrent systems is introduced as a promising application area for answer set programming. As the model of asynchronous systems a generalisation of communicating automata, 1-safe Petri nets, are used. It is shown how a 1-safe Petri net and a requirement on the behaviour of the net can be translated into a logic program such that the bounded model checking problem for the net can be solved by computing stable models of the corresponding program. The use of the stable model semantics leads to compact encodings of bounded reachability and deadlock detection tasks as well as the more general problem of bounded model checking of linear temporal logic. Correctness proofs of the devised translations are given, and some experimental results using the translation and the Smodels system are presented.Comment: 32 pages, to appear in Theory and Practice of Logic Programmin

    Management of benign inverted sinonasal papilloma avoiding external approaches

    Full text link
    Even though endoscopic removal of inverted papillomas has gained popularity, many studies advocate supplementary external approaches. The impact of including the current surgical staging system into the pre-operative clinical and radiological assessment has not been systematically evaluated. We present our experience with total endoscopic management of inverted papillomas and compare the accuracy of the pre-operative predicted extent of surgery, with the actually performed surgery. From 1997 to 2005 data from 51 patients with inverted papillomas were prospectively collected and subsequently reviewed. All have been operated on endoscopically without an external approach. The overall recurrence rate was 3.9 per cent. Pre-operative prediction of extent of surgery was accurate in 26 of 51 (51 per cent). The main reasons for the inaccurate pre-operative prediction were the variable sizes and locations of the inverted papilloma bases, particularly in the maxillary sinus and the frontal recess. Our results encourage us to recommend endoscopic management as the standard treatment of benign inverted papillomas

    Design of the Pluto Event Generator

    Full text link
    We present the design of the simulation package Pluto, aimed at the study of hadronic interactions at SIS and FAIR energies. Its main mission is to offer a modular framework with an object-oriented structure, thereby making additions such as new particles, decays of resonances, new models up to modules for entire changes easily applicable. Overall consistency is ensured by a plugin- and distribution manager. Particular features are the support of a modular structure for physics process descriptions, and the possibility to access the particle stream for on-line modifications. Additional configuration and self-made classes can be attached by the user without re-compiling the package, which makes Pluto extremely configurable.Comment: Presented at the 17th International Conference on Computing in High Energy and Nuclear Physic

    Design of the Pluto Event Generator

    Full text link
    We present the design of the simulation package Pluto, aimed at the study of hadronic interactions at SIS and FAIR energies. Its main mission is to offer a modular framework with an object-oriented structure, thereby making additions such as new particles, decays of resonances, new models up to modules for entire changes easily applicable. Overall consistency is ensured by a plugin- and distribution manager. Particular features are the support of a modular structure for physics process descriptions, and the possibility to access the particle stream for on-line modifications. Additional configuration and self-made classes can be attached by the user without re-compiling the package, which makes Pluto extremely configurable.Comment: Presented at the 17th International Conference on Computing in High Energy and Nuclear Physic

    Design of the Pluto Event Generator

    Full text link
    We present the design of the simulation package Pluto, aimed at the study of hadronic interactions at SIS and FAIR energies. Its main mission is to offer a modular framework with an object-oriented structure, thereby making additions such as new particles, decays of resonances, new models up to modules for entire changes easily applicable. Overall consistency is ensured by a plugin- and distribution manager. Particular features are the support of a modular structure for physics process descriptions, and the possibility to access the particle stream for on-line modifications. Additional configuration and self-made classes can be attached by the user without re-compiling the package, which makes Pluto extremely configurable.Comment: Presented at the 17th International Conference on Computing in High Energy and Nuclear Physic

    Bose-Einstein Condensation Temperature of Homogenous Weakly Interacting Bose Gas in Variational Perturbation Theory Through Six Loops

    Full text link
    We compute the shift of the transition temperature for a homogenous weakly interacting Bose gas in leading order in the scattering length a for given particle density n. Using variational perturbation theory through six loops in a classical three-dimensional scalar field theory, we obtain Delta T_c/T_c = 1.25+/-0.13 a n^(1/3), in agreement with recent Monte-Carlo results.Comment: 4 pages; omega' corrected: final result changes slightly to 1.25+/-0.13; references added; several minor change

    Pluto: A Monte Carlo Simulation Tool for Hadronic Physics

    Full text link
    Pluto is a Monte-Carlo event generator designed for hadronic interactions from Pion production threshold to intermediate energies of a few GeV per nucleon, as well as for studies of heavy ion reactions. This report gives an overview of the design of the package, the included models and the user interface.Comment: XI International Workshop on Advanced Computing and Analysis Techniques in Physics Research, April 23-27 2007, Amsterdam, the Netherland

    Modelling of Multi-Agent Systems: Experiences with Membrane Computing and Future Challenges

    Full text link
    Formal modelling of Multi-Agent Systems (MAS) is a challenging task due to high complexity, interaction, parallelism and continuous change of roles and organisation between agents. In this paper we record our research experience on formal modelling of MAS. We review our research throughout the last decade, by describing the problems we have encountered and the decisions we have made towards resolving them and providing solutions. Much of this work involved membrane computing and classes of P Systems, such as Tissue and Population P Systems, targeted to the modelling of MAS whose dynamic structure is a prominent characteristic. More particularly, social insects (such as colonies of ants, bees, etc.), biology inspired swarms and systems with emergent behaviour are indicative examples for which we developed formal MAS models. Here, we aim to review our work and disseminate our findings to fellow researchers who might face similar challenges and, furthermore, to discuss important issues for advancing research on the application of membrane computing in MAS modelling.Comment: In Proceedings AMCA-POP 2010, arXiv:1008.314

    Li₀.₆[Li₀.₂Sn₀.₈S₂] – a layered lithium superionic conductor

    Get PDF
    One of the key challenges of energy research is finding solid electrolytes with high lithium conductivities comparable to those of liquid electrolytes. In this context, developing new structural families of potential Li+ ion conductors and identifying structural descriptors for fast Li+ ion conduction to occur is key to expand the scope of viable Li+ ion conductors. Here, we report that the layered material Li0.6[Li0.2Sn0.8S2] shows a Li+ ion conductivity comparable to the currently best lithium superionic conductors (LISICONs). Li0.6[Li0.2Sn0.8S2] is composed of layers comprising edge-sharing Li/SnS6 octahedra, interleaved with both tetrahedrally and octahedrally coordinated Li+ ions. Pulsed field gradient (PFG) NMR studies on powder samples show intragrain (bulk) diffusion coefficients DNMR on the order of 10−11 m2 s−1 at room temperature, which corresponds to a conductivity σNMR of 9.3 × 10−3 S cm−1 assuming the Nernst–Einstein equation, thus putting Li0.6[Li0.2Sn0.8S2] en par with the best Li solid electrolytes reported to date. This is in agreement with impedance spectroscopy on powder pellets, showing a conductivity of 1.5 × 10−2 S cm−1. Direct current galvanostatic polarization/depolarization measurements on such samples show negligible electronic contributions (less than 10−9 S cm−1) but indicate significant contact resistance (d.c. conductivity in a reversible cell is 1.2 × 10−4 S cm−1 at 298 K). Our results suggest that the partial occupation of interlayer Li+ positions in this layered material is beneficial for its transport properties, which together with tetrahedrally coordinated Li sites provides facile Li+ ion diffusion pathways in the intergallery space between the covalent Sn(Li)S2 layers. This work therefore points to a generic design principle for new layered Li+ ion conductors based on the controlled depletion of Li+ ions in the interlayer space
    • …
    corecore