18 research outputs found

    A Wireless Multi-Channel Recording System for Freely Behaving Mice and Rats

    Get PDF
    To understand the neural basis of behavior, it is necessary to record brain activity in freely moving animals. Advances in implantable multi-electrode array technology have enabled researchers to record the activity of neuronal ensembles from multiple brain regions. The full potential of this approach is currently limited by reliance on cable tethers, with bundles of wires connecting the implanted electrodes to the data acquisition system while impeding the natural behavior of the animal. To overcome these limitations, here we introduce a multi-channel wireless headstage system designed for small animals such as rats and mice. A variety of single unit and local field potential signals were recorded from the dorsal striatum and substantia nigra in mice and the ventral striatum and prefrontal cortex simultaneously in rats. This wireless system could be interfaced with commercially available data acquisition systems, and the signals obtained were comparable in quality to those acquired using cable tethers. On account of its small size, light weight, and rechargeable battery, this wireless headstage system is suitable for studying the neural basis of natural behavior, eliminating the need for wires, commutators, and other limitations associated with traditional tethered recording systems

    Oscillatory activity in the medial prefrontal cortex and nucleus accumbens correlates with impulsivity and reward outcome.

    Get PDF
    Actions expressed prematurely without regard for their consequences are considered impulsive. Such behaviour is governed by a network of brain regions including the prefrontal cortex (PFC) and nucleus accumbens (NAcb) and is prevalent in disorders including attention deficit hyperactivity disorder (ADHD) and drug addiction. However, little is known of the relationship between neural activity in these regions and specific forms of impulsive behaviour. In the present study we investigated local field potential (LFP) oscillations in distinct sub-regions of the PFC and NAcb on a 5-choice serial reaction time task (5-CSRTT), which measures sustained, spatially-divided visual attention and action restraint. The main findings show that power in gamma frequency (50-60 Hz) LFP oscillations transiently increases in the PFC and NAcb during both the anticipation of a cue signalling the spatial location of a nose-poke response and again following correct responses. Gamma oscillations were coupled to low-frequency delta oscillations in both regions; this coupling strengthened specifically when an error response was made. Theta (7-9 Hz) LFP power in the PFC and NAcb increased during the waiting period and was also related to response outcome. Additionally, both gamma and theta power were significantly affected by upcoming premature responses as rats waited for the visual cue to respond. In a subgroup of rats showing persistently high levels of impulsivity we found that impulsivity was associated with increased error signals following a nose-poke response, as well as reduced signals of previous trial outcome during the waiting period. Collectively, these in-vivo neurophysiological findings further implicate the PFC and NAcb in anticipatory impulsive responses and provide evidence that abnormalities in the encoding of rewarding outcomes may underlie trait-like impulsive behaviour.RCUK, Wellcome, OtherThis is the final version of the article. It first appeared at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111300

    In vivo Recording Quality of Mechanically Decoupled Floating Versus Skull-Fixed Silicon-Based Neural Probes

    Get PDF
    Throughout the past decade, silicon-based neural probes have become a driving force in neural engineering. Such probes comprise sophisticated, integrated CMOS electronics which provide a large number of recording sites along slender probe shanks. Using such neural probes in a chronic setting often requires them to be mechanically anchored with respect to the skull. However, any relative motion between brain and implant causes recording instabilities and tissue responses such as glial scarring, thereby shielding recordable neurons from the recording sites integrated on the probe and thus decreasing the signal quality. In the current work, we present a comparison of results obtained using mechanically fixed and floating silicon neural probes chronically implanted into the cortex of a non-human primate. We demonstrate that the neural signal quality estimated by the quality of the spiking and local field potential (LFP) recordings over time is initially superior for the floating probe compared to the fixed device. Nonetheless, the skull-fixed probe also allowed long-term recording of multi-unit activity (MUA) and low frequency signals over several months, especially once pulsations of the brain were properly controlled

    Association between lifestyle factors and headache

    Get PDF
    Modification of lifestyle habits is a key preventive strategy for many diseases. The role of lifestyle for the onset of headache in general and for specific headache types, such as migraine and tension-type headache (TTH), has been discussed for many years. Most results, however, were inconsistent and data on the association between lifestyle factors and probable headache forms are completely lacking. We evaluated the cross-sectional association between different lifestyle factors and headache subtypes using data from three different German cohorts. Information was assessed by standardized face-to-face interviews. Lifestyle factors included alcohol consumption, smoking status, physical activity and body mass index. According to the 2004 diagnostic criteria, we distinguished the following headache types: migraine, TTH and their probable forms. Regional variations of lifestyle factors were observed. In the age- and gender-adjusted logistic regression models, none of the lifestyle factors was statistically significant associated with migraine, TTH, and their probable headache forms. In addition, we found no association between headache subtypes and the health index representing the sum of individual lifestyle factors. The lifestyle factors such as alcohol consumption, smoking, physical activity and overweight seem to be unrelated to migraine and TTH prevalence. For a judgement on their role in the onset of new or first attacks of migraine or TTH (incident cases), prospective cohort studies are required

    Application of floating silicon-based linear multielectrode arrays for acute recording of single neuron activity in awake behaving monkeys

    No full text
    One of the fundamental challenges in behavioral neurophysiology in awake animals is the steady recording of action potentials of many single neurons for as long as possible. Here, we present single neuron data obtained during acute recordings mainly from premotor cortices of three macaque monkeys using a silicon-based linear multielectrode array. The most important aspect of these probes, compared with similar models commercially available, is that, once inserted into the brain using a dedicated insertion device providing an intermediate probe fixation by means of vacuum, they can be released and left floating in the brain. On the basis of our data, these features appear to provide (i) optimal physiological conditions for extracellular recordings, (ii) good or even excellent signal-to-noise ratio depending on the recorded brain area and cortical layer, and (iii) extreme stability of the signal over relatively long periods. The quality of the recorded signal did not change significantly after several penetrations into the same restricted cortical sector, suggesting limited tissue damage due to probe insertion. These results indicate that these probes offer several advantages for acute neurophysiological experiments in awake monkeys, and suggest the possibility to employ them for semichronic or even chronic studies

    Electrode placements and behavioural data.

    No full text
    <p>A) Representative histology of silicon probe placement in the medial prefrontal cortex and nucleus accumbens. B) Reconstructed placements of all electrode contacts in prelimbic and infralimbic prefrontal cortex and nucleus accumbens core and shell. C) Scheme of 5-Choice Serial Reaction Time Task (5-CSRTT). Trials start with a nose-poke in the food magazine. After a 5 second delay a 0.5 second light stimulus is presented pseudorandomly in one of 5 nose-poke ports. A response to the illuminated hole within 5 seconds is rewarded with a food pellet. Responses during the waiting period, to the wrong hole, or the absence of a response within 5 seconds of stimulus presentation are punished with a 5 second lights-off timeout. D) Distribution of behavioural latencies for rats to move from entering the food magazine, starting a new trial, to leaving the magazine to start waiting, split by the outcome of the previous trial (either ending in a correct response, and being rewarded, or ending in an incorrect or premature error response). Boxes show the range from 1<sup>st</sup> to 3<sup>rd</sup> quartile of responses, black lines show the median, and whiskers extend to the furthest value from the hinge within 1.5 times the inter-quartile range. Values outside this range are represented as black dots.</p

    Predicting upcoming impulsive responses.

    No full text
    <p>A) Stacked distribution of premature and non-premature (i.e. correct and incorrect) responses as a function of latency of rats to move to wait-start, divided into trials where the previous trials was rewarded (+), or non-rewarded (−). Time zero is the start of the trial, a vertical grey line represents the time of stimulus light presentation (or in the case of premature responses, the time the stimulus light would have been presented). B) Distribution of premature and non-premature responses as depicted in A, represented as a proportion of all responses. C) Receiver-operator characteristic curve for models predicting upcoming premature responses based on leave-one-out cross-validation results. The diagonal grey line represents an uninformative classifier. D) Plot of model accuracy ([number of true positives] + [number of true negatives]/[number of true positives] + [number of false positives] + [number of true negatives] + [number of false negatives]) against threshold predicted probability value. E) Distribution of predicted probabilities for true premature and non-premature trials from the full (behaviour plus LFP) model. The area under each curve is equal to the total number of trials.</p
    corecore