328 research outputs found
On the complexity of rolling block and Alice mazes
We investigate the computational complexity of two maze problems, namely rolling block and Alice mazes. Simply speaking, in the former game one has to roll blocks through a maze, ending in a particular game situation, and in the latter one, one has to move tokens of variable speed through a maze following some prescribed directions. It turns out that when the number of blocks or the number of tokens is not restricted (unbounded),then the problem of solving such a maze becomes PSPACE-complete. Hardness is shown via a reduction from the nondeterministic constraint logic (NCL) of Demaine and Hearn to the problems in question. In this way we improve on a previous PSPACE-completeness result of Buchin and Buchin on rolling block mazes to best possible. Moreover, we also consider bounded variants of these maze games, i.e., when the number of blocks or tokens is bounded by a constant, and prove close relations to variants of graph reachability problems
More Structural Characterizations of Some Subregular Language Families by Biautomata
We study structural restrictions on biautomata such as, e.g., acyclicity,
permutation-freeness, strongly permutation-freeness, and orderability, to
mention a few. We compare the obtained language families with those induced by
deterministic finite automata with the same property. In some cases, it is
shown that there is no difference in characterization between deterministic
finite automata and biautomata as for the permutation-freeness, but there are
also other cases, where it makes a big difference whether one considers
deterministic finite automata or biautomata. This is, for instance, the case
when comparing strongly permutation-freeness, which results in the family of
definite language for deterministic finite automata, while biautomata induce
the family of finite and co-finite languages. The obtained results nicely fall
into the known landscape on classical language families.Comment: In Proceedings AFL 2014, arXiv:1405.527
Grid graphs with diagonal edges and the complexity of Xmas mazes
We investigate the computational complexity of some maze problems, namely the reachability problem for (undirected) grid graphs with diagonal edges, and the solvability of Xmas tree mazes. Simply speaking, in the latter game one has to move sticks of a certain length through a maze, ending in a particular game situation. It turns out that when the number of sticks is bounded by some constant, these problems are closely related to the grid graph problems with diagonals. If on the other hand an unbounded number of sticks is allowed, then the problem of solving such a maze becomes PSPACE-complete. Hardness is shown via a reduction from the nondeterministic constraint logic (NCL) of Demaine and Hearn to Xmas tree mazes
From Finite Automata to Regular Expressions and Back--A Summary on Descriptional Complexity
The equivalence of finite automata and regular expressions dates back to the
seminal paper of Kleene on events in nerve nets and finite automata from 1956.
In the present paper we tour a fragment of the literature and summarize results
on upper and lower bounds on the conversion of finite automata to regular
expressions and vice versa. We also briefly recall the known bounds for the
removal of spontaneous transitions (epsilon-transitions) on non-epsilon-free
nondeterministic devices. Moreover, we report on recent results on the average
case descriptional complexity bounds for the conversion of regular expressions
to finite automata and brand new developments on the state elimination
algorithm that converts finite automata to regular expressions.Comment: In Proceedings AFL 2014, arXiv:1405.527
On the descriptional complexity of operations on semilinear sets
We investigate the descriptional complexity of operations on semilinear sets. Roughly speaking, a semilinear set is the finite union of linear sets, which are built by con- stant and period vectors. The interesting parameters of a semilinear set are: (i) the maximal value that appears in the vectors of periods and constants and (ii) the number of such sets of periods and constants necessary to describe the semilinear set under consideration. More precisely, we prove upper bounds on the union, intersection, complementation, and inverse homomorphism. In particular, our result on the complementation upper bound answers an open problem from [G. J. Lavado, G. Pighizzini, S. Seki: Operational State Complexity of Parikh Equivalence, 2014]
On Iterated Dominance, Matrix Elimination, and Matched Paths
We study computational problems arising from the iterated removal of weakly
dominated actions in anonymous games. Our main result shows that it is
NP-complete to decide whether an anonymous game with three actions can be
solved via iterated weak dominance. The two-action case can be reformulated as
a natural elimination problem on a matrix, the complexity of which turns out to
be surprisingly difficult to characterize and ultimately remains open. We
however establish connections to a matching problem along paths in a directed
graph, which is computationally hard in general but can also be used to
identify tractable cases of matrix elimination. We finally identify different
classes of anonymous games where iterated dominance is in P and NP-complete,
respectively.Comment: 12 pages, 3 figures, 27th International Symposium on Theoretical
Aspects of Computer Science (STACS
Cooperating Distributed Grammar Systems of Finite Index Working in Hybrid Modes
We study cooperating distributed grammar systems working in hybrid modes in
connection with the finite index restriction in two different ways: firstly, we
investigate cooperating distributed grammar systems working in hybrid modes
which characterize programmed grammars with the finite index restriction;
looking at the number of components of such systems, we obtain surprisingly
rich lattice structures for the inclusion relations between the corresponding
language families. Secondly, we impose the finite index restriction on
cooperating distributed grammar systems working in hybrid modes themselves,
which leads us to new characterizations of programmed grammars of finite index.Comment: In Proceedings AFL 2014, arXiv:1405.527
- …