24 research outputs found

    A Note on the Instability of Lorentzian Taub-NUT-Space

    Full text link
    I show that there are no SU(2)-invariant (time-dependent) tensorial perturbations of Lorentzian Taub-NUT space. It follows that the spacetime is unstable at the linear level against generic perturbations. I speculate that this fact is responsible for so far unsuccessful attempts to define a sensible thermodynamics for NUT-charged spacetimes.Comment: 13 pages, no figure

    Self-gravitating Klein-Gordon fields in asymptotically Anti-de-Sitter spacetimes

    Full text link
    We initiate the study of the spherically symmetric Einstein-Klein-Gordon system in the presence of a negative cosmological constant, a model appearing frequently in the context of high-energy physics. Due to the lack of global hyperbolicity of the solutions, the natural formulation of dynamics is that of an initial boundary value problem, with boundary conditions imposed at null infinity. We prove a local well-posedness statement for this system, with the time of existence of the solutions depending only on an invariant H^2-type norm measuring the size of the Klein-Gordon field on the initial data. The proof requires the introduction of a renormalized system of equations and relies crucially on r-weighted estimates for the wave equation on asymptotically AdS spacetimes. The results provide the basis for our companion paper establishing the global asymptotic stability of Schwarzschild-Anti-de-Sitter within this system.Comment: 50 pages, v2: minor changes, to appear in Annales Henri Poincar\'

    Semi-classical stability of AdS NUT instantons

    Get PDF
    The semi-classical stability of several AdS NUT instantons is studied. Throughout, the notion of stability is that of stability at the one-loop level of Euclidean Quantum Gravity. Instabilities manifest themselves as negative eigenmodes of a modified Lichnerowicz Laplacian acting on the transverse traceless perturbations. An instability is found for one branch of the AdS-Taub-Bolt family of metrics and it is argued that the other branch is stable. It is also argued that the AdS-Taub-NUT family of metrics are stable. A component of the continuous spectrum of the modified Lichnerowicz operator on all three families of metrics is found.Comment: 18 pages, 3 figures; references adde

    The Simplicial Ricci Tensor

    Full text link
    The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The 3-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The 4-dimensional Ric is the Einstein tensor for such spacetimes. More recently the Ric was used by Hamilton to define a non-linear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincare conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher-dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area -- an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimension.Comment: 19 pages, 2 figure

    Investigating Off-shell Stability of Anti-de Sitter Space in String Theory

    Full text link
    We propose an investigation of stability of vacua in string theory by studying their stability with respect to a (suitable) world-sheet renormalization group (RG) flow. We prove geometric stability of (Euclidean) anti-de Sitter (AdS) space (i.e., Hn\mathbf{H}^n) with respect to the simplest RG flow in closed string theory, the Ricci flow. AdS space is not a fixed point of Ricci flow. We therefore choose an appropriate flow for which it is a fixed point, prove a linear stability result for AdS space with respect to this flow, and then show this implies its geometric stability with respect to Ricci flow. The techniques used can be generalized to RG flows involving other fields. We also discuss tools from the mathematics of geometric flows that can be used to study stability of string vacua.Comment: 29 pages, references added in this version to appear in Classical and Quantum Gravit

    A proof of the Geroch-Horowitz-Penrose formulation of the strong cosmic censor conjecture motivated by computability theory

    Full text link
    In this paper we present a proof of a mathematical version of the strong cosmic censor conjecture attributed to Geroch-Horowitz and Penrose but formulated explicitly by Wald. The proof is based on the existence of future-inextendible causal curves in causal pasts of events on the future Cauchy horizon in a non-globally hyperbolic space-time. By examining explicit non-globally hyperbolic space-times we find that in case of several physically relevant solutions these future-inextendible curves have in fact infinite length. This way we recognize a close relationship between asymptotically flat or anti-de Sitter, physically relevant extendible space-times and the so-called Malament-Hogarth space-times which play a central role in recent investigations in the theory of "gravitational computers". This motivates us to exhibit a more sharp, more geometric formulation of the strong cosmic censor conjecture, namely "all physically relevant, asymptotically flat or anti-de Sitter but non-globally hyperbolic space-times are Malament-Hogarth ones". Our observations may indicate a natural but hidden connection between the strong cosmic censorship scenario and the Church-Turing thesis revealing an unexpected conceptual depth beneath both conjectures.Comment: 16pp, LaTeX, no figures. Final published versio

    A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds

    Full text link
    We consider Kerr spacetimes with parameters a and M such that |a|<< M, Kerr-Newman spacetimes with parameters |Q|<< M, |a|<< M, and more generally, stationary axisymmetric black hole exterior spacetimes which are sufficiently close to a Schwarzschild metric with parameter M>0, with appropriate geometric assumptions on the plane spanned by the Killing fields. We show uniform boundedness on the exterior for sufficiently regular solutions to the scalar homogeneous wave equation. In particular, the bound holds up to and including the event horizon. No unphysical restrictions are imposed on the behaviour of the solution near the bifurcation surface of the event horizon. The pointwise estimate derives in fact from the uniform boundedness of a positive definite energy flux. Note that in view of the very general assumptions, the separability properties of the wave equation on the Kerr background are not used.Comment: 71 pages, 3 figure

    Ricci solitons, Ricci flow, and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua

    Get PDF
    The elliptic Einstein-DeTurck equation may be used to numerically find Einstein metrics on Riemannian manifolds. Static Lorentzian Einstein metrics are considered by analytically continuing to Euclidean time. Ricci-DeTurck flow is a constructive algorithm to solve this equation, and is simple to implement when the solution is a stable fixed point, the only complication being that Ricci solitons may exist which are not Einstein. Here we extend previous work to consider the Einstein-DeTurck equation for Riemannian manifolds with boundaries, and those that continue to static Lorentzian spacetimes which are asymptotically flat, Kaluza-Klein, locally AdS or have extremal horizons. Using a maximum principle we prove that Ricci solitons do not exist in these cases and so any solution is Einstein. We also argue that Ricci-DeTurck flow preserves these classes of manifolds. As an example we simulate Ricci-DeTurck flow for a manifold with asymptotics relevant for AdS_5/CFT_4. Our maximum principle dictates there are no soliton solutions, and we give strong numerical evidence that there exists a stable fixed point of the flow which continues to a smooth static Lorentzian Einstein metric. Our asymptotics are such that this describes the classical gravity dual relevant for the CFT on a Schwarzschild background in either the Unruh or Boulware vacua. It determines the leading O(N^2) part of the CFT stress tensor, which interestingly is regular on both the future and past Schwarzschild horizons.Comment: 48 pages, 7 figures; Version 2 - section 2.2.1 on manifolds with boundaries substantially modified, corrected and extended. Discussion in section 3.1 amended. References added and minor change
    corecore