42 research outputs found

    In situ measurements of fine sediment infiltration (FSI) in gravel-bed rivers with a hydropeaking flow regime

    Get PDF
    The overpresence of fine sediment and fine sediment infiltration (FSI) in the aquatic environment of rivers are of increasing importance due to their limiting effects on habitat quality and use. The habitats of both macroinvertebrates and fish, especially spawning sites, can be negatively affected. More recently, hydropeaking has been mentioned as a driving factor in fine sediment dynamics and FSI in gravel-bed rivers. The primary aim of the present study was to quantify FSI in the vertical stratigraphy of alpine rivers with hydropeaking flow regimes in order to identify possible differences in FSI between the permanently wetted area (during base and peak flows) and the so-called dewatering areas, which are only inundated during peak flows. Moreover, we assessed whether the discharge ratio between base and peak flow is able to explain the magnitude of FSI. To address these aims, freeze-core samples were taken in eight different alpine river catchments. The results showed significant differences in the vertical stratification of FSI between the permanently wetted area during base flow and the dewatering sites. Surface clogging occurred only in the dewatering areas, with decreasing percentages of fine sediments associated with increasing core depths. In contrast, permanently wetted areas contained little or no fine sediment concentrations on the surface of the river bed. Furthermore, no statistical relationship was observed between the magnitude of hydropeaking and the sampled FSI rate. A repeated survey of FSI in the gravel matrix revealed the importance of de-clogging caused by flooding and the importance of FSI in the aquatic environment, especially in the initial stages of riparian vegetation establishment

    Ankommen statt unterwegs sein – Verhalten verstehen, Veränderung fördern

    Get PDF
    ANKOMMEN STATT UNTERWEGS SEIN – VERHALTEN VERSTEHEN, VERÄNDERUNG FÖRDERN Ankommen statt unterwegs sein – Verhalten verstehen, Veränderung fördern / Beckmann, Klaus J. (Rights reserved) ( -

    Focal adhesion kinase regulates the activity of the osmosensitive transcription factor TonEBP/NFAT5 under hypertonic conditions

    Get PDF
    Ton EBP/NFAT5 is a major regulator of the urinary concentrating process and is essential for the osmoadaptation of renal medullary cells. Focal adhesion kinase (FAK) is a mechanosensitive non-receptor protein tyrosine kinase expressed abundantly in the renal medulla. Since osmotic stress causes cell shrinkage, the present study investigated the contribution of FAK on TonEBP/NFAT5 activation. Osmotic stress induced time-dependent activation of FAK as evidenced by phosphorylation at Tyr-397, and furosemide reduces FAK Tyr-397 phosphorylation in the rat renal medulla. Both pharmacological inhibition of FAK and siRNA-mediated knockdown of FAK drastically reduced TonEBP/NFAT5 transcriptional activity and target gene expression in HEK293 cells. This effect was not mediated by impaired nuclear translocation or by reduced transactivating activity of TonEBP/NFAT5. However, TonEBP/NFAT5 abundance under hypertonic conditions was diminished by 50% by FAK inhibition or siRNA knockdown of FAK. FAK inhibition only marginally reduced transcription of the TonEBP/NFAT5 gene. Rather, TonEBP/NFAT5 mRNA stability was diminished significantly by FAK inhibition, which correlated with reduced reporter activity of the TonEBP/NFAT5 mRNA 3' untranslated region (3'-UTR). In conclusion, FAK is a major regulator of TonEBP/NFAT5 activity by increasing its abundance via stabilization of the mRNA. This in turn, depends on the presence of the TonEBP/NFAT5 3'-UTR

    Effects of single and combined low frequency electromagnetic fields and simulated microgravity on gene expression of human mesenchymal stem cells during chondrogenesis

    Get PDF
    Introduction: Low frequency electromagnetic fields (LF-EMF) and simulated microgravity (SMG) have been observed to affect chondrogenesis. A controlled bioreactor system was developed to apply LF-EMF and SMG singly or combined during chondrogenic differentiation of human mesenchymal stem cells (hMSCs) in 3D culture. Material and methods: An external motor gear SMG bioreactor was combined with magnetic Helmholtz coils for EMF (5 mT;15 Hz). Pellets of hMSCs (+/- TGF-beta 3)were cultured (P5) under SMG, LF-EMF, LF-EMF/SMG and control (1 g) conditions for 3 weeks. Sections were stained with safranin-O and collagen type II. Gene expression was evaluated by microarray and real-time polymerase chain reaction analysis. Results: Simulated microgravity application significantly changed gene expression;specifically, COLXA1 but also COL2A1, which represents the chondrogenic potential, were reduced (p < 0.05). Low frequency electromagnetic fields application showed no gene expression changes on a microarray basis. LF-EMF/SMG application obtained significant different expression values from cultures obtained under SMG conditions with a re-increase of COL2A1, therefore rescuing the chondrogenic potential, which had been lowered by SMG. Conclusions: Simulated microgravity lowered hypertrophy but also the chondrogenic potential of hMSCs. Combined LF-EMF/SMG provided a rescue effect of the chondrogenic potential of hMSCs although no LF-EMF effect was observed under optimal conditions. The study provides new insights into how LF-EMF and SMG affect chondrogenesis of hMSCs and how they generate interdependent effects

    Long-term effects of an inpatient weight-loss program in obese children and the role of genetic predisposition-rationale and design of the LOGIC-trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of childhood obesity has increased worldwide, which is a serious concern as obesity is associated with many negative immediate and long-term health consequences. Therefore, the treatment of overweight and obesity in children and adolescents is strongly recommended. Inpatient weight-loss programs have shown to be effective particularly regarding short-term weight-loss, whilst little is known both on the long-term effects of this treatment and the determinants of successful weight-loss and subsequent weight maintenance.</p> <p>The purpose of this study is to evaluate the short, middle and long-term effects of an inpatient weight-loss program for children and adolescents and to investigate the likely determinants of weight changes, whereby the primary focus lies on the potential role of differences in polymorphisms of adiposity-relevant genes.</p> <p>Methods/Design</p> <p>The study involves overweight and obese children and adolescents aged 6 to 19 years, who participate in an inpatient weight-loss program for 4 to 6 weeks. It started in 2006 and it is planned to include 1,500 participants by 2013. The intervention focuses on diet, physical activity and behavior therapy. Measurements are taken at the start and the end of the intervention and comprise blood analyses (DNA, lipid and glucose metabolism, adipokines and inflammatory markers), anthropometry (body weight, height and waist circumference), blood pressure, pubertal stage, and exercise capacity. Physical activity, dietary habits, quality of life, and family background are assessed by questionnaires. Follow-up assessments are performed 6 months, 1, 2, 5 and 10 years after the intervention: Children will complete the same questionnaires at all time points and visit their general practitioner for examination of anthropometric parameters, blood pressure and assessment of pubertal stage. At the 5 and 10 year follow-ups, blood parameters and exercise capacity will be additionally measured.</p> <p>Discussion</p> <p>Apart from illustrating the short, middle and long-term effects of an inpatient weight-loss program, this study will contribute to a better understanding of inter-individual differences in the regulation of body weight, taking into account the role of genetic predisposition and lifestyle factors.</p> <p>Trial Registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT01067157">NCT01067157</a>.</p

    Violence and the car

    No full text

    Ă–ffentlicher Personennahverkehr

    Get PDF
    Der Klimawandel wird den gesamten Personenverkehr betreffen. Schon heute ist Verkehr wetterabhängig und bei ungünstigen Wetterlagen kommt es zu relevanten Beeinträchtigungen. Bekannt sind etwa Störungen im Schüler- und Berufsverkehr an schneereichen Tagen, bei Sturm, Starkregen oder Hitze. Die Zunahme solcher Zustände stellt bislang noch ungeklärte Fragen, sowohl was die möglichen Verhaltensänderungen als auch die gebotene Anpassung des gesamten Verkehrssystems und Verkehrsmanagements betrifft
    corecore