251 research outputs found

    Aspects of integrability in a classical model for non-interacting fermionic fields

    Get PDF
    In this work we investigate the issue of integrability in a classical model for noninteracting fermionic fields. This model is constructed via classical-quantum correspondence obtained from the semiclassical treatment of the quantum system. Our main finding is that the classical system, contrary to the quantum system, is not integrablein general. Regarding this contrast it is clear that in general classical models for fermionic quantum systems have to be handled with care. Further numerical investigation of the system showed that there may be islands of stability in the phase space. We also investigated a similar model that is used in theoretical chemistry and found this one to be most probably integrable, although also here the integrability is not assured by the quantum-classical correspondence principle

    Holocene Dynamics of Temperate Rainforests in West-Central Patagonia

    Get PDF
    Analyses of long-term ecosystem dynamics offer insights into the conditions that have led to stability vs. rapid change in the past and the importance of disturbance in regulating community composition. In this study, we (1) used lithology, pollen, and charcoal data from Mallín Casanova (47°S) to reconstruct the wetland, vegetation, and fire history of west-central Patagonia; and (2) compared the records with independent paleoenvironmental and archeological information to assess the effects of past climate and human activity on ecosystem dynamics. Pollen data indicate that Nothofagus-Pilgerodendronforests were established by 9,000 cal yr BP. Although the biodiversity of the understory increased between 8,480 and 5,630 cal yr BP, forests remained relatively unchanged from 9,000 to 2,000 cal yr BP. The charcoal record registers high fire-episode frequency in the early Holocene followed by low biomass burning between 6,500 and 2,000 cal yr BP. Covarying trends in charcoal, bog development, and Neoglacial advances suggest that climate was the primary driver of these changes. After 2,000 cal yr BP, the proxy data indicate (a) increased fire-episode frequency; (b) centennial-scale shifts in bog and forest composition; (c) the emergence of vegetation-fire linkages not recorded in previous times; and (d) paludification in the last 500 years possibly associated with forest loss. Our results therefore suggest that Nothofagus-Pilgerodendrondominance was maintained through much of the Holocene despite long-term changes in climate and fire. Unparalleled fluctuations in local ecosystems during the last two millennia were governed by disturbance-vegetation-hydrology feedbacks likely triggered by greater climate variability and deforestation

    Minimum Wages and Racial Discrimination in Hiring: Evidence from a Field Experiment

    Get PDF
    When minimum wages increase, employers may respond to the regulatory burdens by substituting away from disadvantaged workers. We test this hypothesis using a correspondence study with 35,000 applications around ex-ante uncertain minimum wage increases in three U.S. states. Before the increases, applicants with distinctively Black names were 19 percent less likely to receive a callback than equivalent applicants with distinctively white names. Announcements of minimum wage hikes substantially reduce callbacks for all applicants but shrink the racial callback gap by 80 percent. Racial inequality decreases because firms disproportionately reduce callbacks to lower-quality white applicants who benefited from discrimination under lower minimum wages

    Euler–Lagrangian simulation of the fuel spray of a planar prefilming airblast atomizer

    Get PDF
    The pollutant emissions of aircraft engines are strongly affected by the fuel injection into the combustion chamber. Hence, the precise description of the fuel spray is required in order to predict these emissions more reliably. The characteristics of a spray is determined during the atomization process, especially during primary breakup in the vicinity of the atomizer nozzle. Currently, Euler-Lagrangian approaches are used to predict the droplet trajectories in combustor simulations along with reaction and pollutant formation models. To be able to reliably predict pollutant emissions in the future, well-defined starting conditions of the liquid fuel droplets close to the atomizer nozzle are necessary. In the present work, Euler-Lagrangian simulations of a generic airblast atomizer are presented. The starting conditions of the droplets are varied in the simulations by means of a primary breakup model, which takes into account the local gas velocity when predicting the droplet diameter. The objective of this work is to determine the optimal parameters of the probability density functions for the starting position and the starting velocity of the droplets. Spray properties observed in the simulations are used to qualitatively evaluate the major effects of the distribution parameters on the spray and the suitability of the primary breakup model being applied. Hence, the spatial distribution of an experimental spray can be reproduced using a statistical model for the droplet starting conditions

    Signatures of irreversibility in microscopic models of flocking

    Full text link
    Flocking in d=2d=2 is a genuine non-equilibrium phenomenon for which irreversibility is an essential ingredient. We study a class of minimal flocking models whose only source of irreversibility is self-propulsion and use the entropy production rate (EPR) to quantify the departure from equilibrium across their phase diagrams. The EPR is maximal in the vicinity of the order-disorder transition, where reshuffling of the interaction network is fast. We show that signatures of irreversibility come in the form of asymmetries in the steady state distribution of the flock's microstates. They occur as consequences of the time reversal symmetry breaking in the considered self-propelled systems, independently of the interaction details. In the case of metric pairwise forces, they reduce to local asymmetries in the distribution of pairs of particles. This study suggests a possible use of pair asymmetries both to quantify the departure from equilibrium and to learn relevant information about aligning interaction potentials from data.Comment: 8 pages + Appendix; 6 figure

    Holocene Dynamics of Temperate Rainforests in West-Central Patagonia

    Get PDF
    Analyses of long-term ecosystem dynamics offer insights into the conditions that have led to stability vs. rapid change in the past and the importance of disturbance in regulating community composition. In this study, we (1) used lithology, pollen, and charcoal data from Mallín Casanova (47°S) to reconstruct the wetland, vegetation, and fire history of west-central Patagonia; and (2) compared the records with independent paleoenvironmental and archeological information to assess the effects of past climate and human activity on ecosystem dynamics. Pollen data indicate that Nothofagus-Pilgerodendron forests were established by 9,000 cal yr BP. Although the biodiversity of the understory increased between 8,480 and 5,630 cal yr BP, forests remained relatively unchanged from 9,000 to 2,000 cal yr BP. The charcoal record registers high fire-episode frequency in the early Holocene followed by low biomass burning between 6,500 and 2,000 cal yr BP. Covarying trends in charcoal, bog development, and Neoglacial advances suggest that climate was the primary driver of these changes. After 2,000 cal yr BP, the proxy data indicate (a) increased fire-episode frequency; (b) centennial-scale shifts in bog and forest composition; (c) the emergence of vegetation-fire linkages not recorded in previous times; and (d) paludification in the last 500 years possibly associated with forest loss. Our results therefore suggest that Nothofagus-Pilgerodendron dominance was maintained through much of the Holocene despite long-term changes in climate and fire. Unparalleled fluctuations in local ecosystems during the last two millennia were governed by disturbance-vegetation-hydrology feedbacks likely triggered by greater climate variability and deforestation.This work was supported by grants from the National Science Foundation (0966472, 0956552, 0602166), the National Geographic Society (7988-06), and the Department of Archaeology and Natural History at the Australian National University
    corecore