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Abstract: With the increasing demand for efficient and accurate numerical simulations of spray
combustion in jet engines, the necessity for robust models to enhance the capabilities of spray models
has become imperative. Existing approaches often rely on ad hoc determinations or simplifications,
resulting in information loss and potentially inaccurate predictions for critical spray characteristics,
such as droplet diameters, velocities, and positions, especially under extreme operating conditions
or temporal fluctuations. In this study, we introduce a novel approach to modeling multivariate
spray characteristics using Gaussian mixture models (GMM). By applying this approach to spray
data obtained from numerical simulations of the primary atomization in air-blast atomizers, we
demonstrate that GMMs effectively capture the spray characteristics across a wide range of operating
conditions. Importantly, our investigation reveals that GMMs can handle complex non-linear depen-
dencies by increasing the number of components, thereby enabling the modeling of more complex
spray statistics. This adaptability makes GMMs a versatile tool for accurately representing spray
characteristics even under extreme operating conditions. The presented approach holds promise
for enhancing the accuracy of spray combustion modeling, offering an improved injection model
that accurately captures the underlying droplet distribution. Additionally, GMMs can serve as a
foundation for constructing meta models, striking a balance between the efficiency of low-order
approaches and the accuracy of high-fidelity simulations.

Keywords: spray; atomization; fuel injection; Lagrangian particle tracking; Euler–Lagrange simulations;
machine learning; Gaussian mixture models; Hellinger distance; smoothed particle hydrodynamics

1. Introduction

The spray combustion process in jet engines consists of complex conjugated physical
and chemical processes with multiple time and length scales, making numerical modeling
extraordinarily challenging. A computationally effective way to combat these challenges
is coupled simulations in which the gaseous phase is modeled in an Eulerian frame of
reference and the disperse phase is tracked in a Lagrangian frame of reference. As the
physical process is severely influenced by the initial spray characteristics [1], Lagrangian
particle tracking (LPT) is also reliant on accurate initial conditions [2,3]. The atomization
process responsible for the spray formation is, however, not yet fully understood and
difficult to analyze, both experimentally and numerically. Recently, there have been some
studies that aim to reduce the computational cost of injector simulations through the use of
machine learning techniques and thusly obtained predictions to initialize Euler–Lagrange
simulations [4–6]. However, these approaches, though promising, are far from mature.
Therefore, most Euler–Lagrange spray simulations rely on simplistic injection models that
emulate the primary atomization results. In most cases, a droplet diameter distribution
based on a characteristic mean diameter is prescribed that is determined either ad hoc
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through experimental or numerical investigations [7–11], empirical correlations [12,13],
or through low-order models [14–17]. Some authors employ deterministic approaches to
determine droplet velocities based on the droplet diameter [9,16], others employ some
stochastic methods [18], an,d in some cases, the droplet velocities are either constant [7,15]
or neglected [14]. The spray is usually injected at discrete points distributed evenly around
the rotation axis at one or more specified radial distances [7,16]. Some authors employ
more sophisticated approaches that incorporate some multivariate stochastic dependencies
of the droplet features [19,20]. One approach that should be highlighted is the multi-
variate injection model by Coblenz et al. [20], which employs vine copulas to accurately
reproduce the multivariate dependencies of the individual droplet diameters, velocities,
and positions determined through 2D numerical simulation of the primary atomization
process [21] and allows for the sampling from these determined statistical distributions.
As Coblenz et al. [20] infer, their model also enables the prediction of the spray characteris-
tics for operating conditions that were not part of the preceding numerical study through
interpolation of the model parameters.

While these approaches are widely employed and have been demonstrated to be suit-
able for Euler–Lagrange simulations of spray combustion, they are not without drawbacks.
The ad hoc determination or tuning of spray characteristics through either experiment or
comprehensive numerical simulation is both exceedingly expensive and difficult. Most
more affordable approaches usually necessitate some kind of simplification and thereby
inherently exhibit some information loss. The injection model by Coblenz et al. [20] is
very appealing due to the possibility of predicting the multivariate dependencies of un-
known sprays. However, it is based on parametric ansatz functions that are selected to be
suitable for the spray characteristics for their considered geometry of a simplified planar
atomizer [13] over their considered operating range. In primary atomization models, the
challenges lie in capturing the complex dependencies and interactions of various spray
characteristics, such as droplet diameters, velocities, and positions. The parametric ansatz
functions used in some models, while suitable for specific geometries and operating ranges,
may fail to accurately represent spray behavior under varying conditions, limiting their
applicability in critical situations for combustion behavior and the design of atomizers.
Of special interest are situations in which the spray characteristics deviate from the opti-
mum, such as extreme operating conditions [22], or through temporal fluctuations induced
by thermoacoustic instabilities [23,24], both of which have a significant impact on flame
stability and emission characteristics. Another aspect that has to be considered is that a suf-
ficiently sophisticated spray model might feasibly be employed to aid in the design process
of atomizers. If a model were able to capture how geometry changes affect spray character-
istics, it could possibly be used to markedly shorten design cycles. Similar methods using
simplified models are already in use [15]. Beyond primary atomization, a sophisticated
spray model may also be used to model other aspects of the spray combustion process,
like secondary breakup or evaporation, in the future. This aspiration also necessitates a
high level of flexibility that cannot be provided by a model that is inherently dependent on
ansatz functions. Therefore, a new approach is required to develop robust models capable
of handling complex multivariate dependencies and extending spray modeling capabilities.

To address these limitations, we propose exploring the Gaussian mixture model
(GMM) as a new avenue for modeling multivariate spray characteristics. The GMM offers a
data-driven technique to model probability distributions through a weighted summation of
multiple multivariate normal distributions. Unlike traditional approaches, the GMM does
not require ad hoc assumptions about the underlying multivariate dependencies, allowing
for a more flexible and accurate representation of spray behavior. By adopting the GMM, we
aim to develop a robust spray model that can easily capture intricate dependencies, facilitate
straightforward coupling with other models, and seamlessly accommodate additional spray
features and mechanisms. Through this approach, we strive to provide a comprehensive
and adaptable framework that can significantly enhance the predictive capabilities of spray
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models and aid in the design process of atomizers, ultimately advancing the understanding
and optimization of spray combustion processes in jet engines.

2. Materials and Methods
2.1. Description of the Training Data

The training data were generated through 2D numerical simulations of the primary
atomization process in an air-blast atomizer of a jet engine combustor. These simulations
cover four operating points, denoted as OP1−OP4, each corresponding to increasing
engine load. To perform these simulations, we utilized the smoothed particle hydrody-
namics (SPH) method, which was extensively employed in this context. The specific
setup for these simulations follows the methodology outlined by Okraschevski et al. [22].
In this setup, the primary atomization process is reduced to two dimensions in a neces-
sary compromise between physical fidelity and computational cost. Despite its simplified
two-dimensional approach, the SPH method has demonstrated its capability to accurately
capture the spray characteristics [10,11,21,22,25,26]. Figure 1 displays two snapshots from
the primary atomization process, one at OP1 and the other at OP4, clearly illustrating how
the emerging ligament structures and, subsequently, the downstream droplet characteris-
tics are impacted by the change in operating conditions with the decreasing air–fuel ratio.
Note that while the gas phase was considered during the simulation, it was excluded from
the snapshots to increase visibility of the atomization process and the difference in between
the operating points.

(a) (b)

Figure 1. Impact of operating conditions (OP) on the primary atomization process and the formed
droplet size distributions. Inlet and outlet boundary conditions are denoted as red and green,
respectively. (a) OP1, (b) OP4.

From these simulations, the spray data are extracted in post-processing at a measure-
ment plane a short distance downstream of the atomization edge. For each droplet, four
features are extracted: the equivalent diameter D, the radial distance to the rotation axis r,
and axial and radial velocities uax and urad. Only liquid fragments consisting of at least four
particles or an equivalent diameter of D = 22.5 µm are considered as droplets, and smaller
fragments are discarded as numerical artefacts. Each feature is subsequently linearly scaled
to the range [0,1] over all operating points. The number of samples N in each data set is
shown in Table 1.

Table 1. Number of droplets N sampled at each operating point OP.

OP 1 2 3 4

N 6094 15,501 44,484 44,572
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Figures 2 and 3 present the empirical probability density functions (PDFs) f and
cumulative distribution functions (CDFs) F, respectively.
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Figure 2. Univariate PDFs for 4 different OP’s with varying load for the equivalent diameter D, the
radial distance to the rotation axis r, and axial and radial velocities uax and urad.

The probability density fx(xk) is defined as the the number of droplets nk in the bin k,
the bin’s width ∆x, and the total number of droplets N as

f (xk) =
1

∆x
nk
N

, (1)

and the cumulative distribution function F(x) is defined as the number of droplets smaller
than x divided by the total number of droplets:

F(x) =
1
N

N

∑
i=1

1xi≤x . (2)
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Figure 3. Univariate CDFs for 4 different OPs for the equivalent diameter D, the radial distance to
the rotation axis r, and axial and radial velocities uax and urad.

The diameter distributions on the top left of both figures exhibit a strong skewness
toward the smallest possible values resolved by the SPH simulations. Notably, as the load
increases at the operating points, the probability of medium-sized droplets also increases.
It is important to note that droplets with a scaled diameter above D = 0.5 are extremely rare,
leading to CDFs that approach unity beyond D > 0.5. The PDFs of the radial coordinate r
resemble Gaussian curves. As the load increases from OP1 to OP4, the distributions flatten
without a significant shift in the location of their peaks. In the CDFs, this corresponds to
a decrease in the slope for higher loads, with a median radial coordinate close to r = 0.5
across all operating points. Both axial and radial velocities, uax and urad, follow moderately
right-skewed bell-shaped PDFs, showing a noticeable trend toward higher values as the
load increases. In the CDFs, this corresponds to a combination of a shift toward higher
values and decreasing slope.

As discussed in the introduction section, the distributions of the droplet features are
expected to exhibit statistical interdependence. Herein, the simplest correlations can be
quantified and represented using Pearson correlation coefficients, as shown in Figure 4.
Notably, there is an inverse correlation between the diameter and other observed features,
with the strength of the correlation varying with the operating conditions. Additionally,
the axial and radial velocity components are positively correlated, while the strongest
correlation exists between radial coordinate and radial velocity.



Energies 2023, 16, 6818 6 of 15

0.3 0.0 0.3 0.6

D - r

D - uax

D - urad

r - uax

r - urad

uax - urad

OP1
OP2
OP3
OP4

Figure 4. Pearson correlation coefficients between the different features for every operating point.

The Pearson correlation coefficients provide valuable information about the basic linear
associations between different droplet features. However, it is crucial to acknowledge that
these coefficients cannot fully capture the complex multivariate dependencies and nonlinear
or non-monotonic relationships that might exist in the data. The limitations of Pearson
correlation become evident when considering the bivariate joint PDFs depicted in Figure 5,
especially for OP4. These PDFs reveal nonlinear relationships that were not apparent
from the Pearson correlation analysis. The PDFs involving the diameter confirm the slight
inverse correlation mentioned earlier, while the correlation between radial velocity and
radial coordinate aligns with the quantitative findings. However, the joint PDFs uncover
an apparent nonlinear relationship between axial velocity and radial coordinate, exhibiting
higher axial velocities for small and large droplets, and lower axial velocities for medium-
sized droplets.

These nonlinear and multivariate correlations observed in the droplet statistics empha-
size the need for a sophisticated modeling approach. Traditional models may not efficiently
capture the intricate interactions and dependencies present in the data. To address this
limitation, advanced statistical techniques, such as machine learning algorithms, should be
considered. These approaches can effectively handle the complexity of the data, allowing us
to capture and utilize the nonlinear and multivariate relationships among droplet features
more accurately.
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Figure 5. Bivariate joint PDFs depicting the nonlinear dependencies in droplet properties at OP4.
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2.2. Gaussian Mixture Model

The Gaussian mixture model (GMM) is a powerful probabilistic model that constitutes
the core of our analysis for modeling multivariate spray statistics. It is a flexible model that
can capture complex and non-linear relationships between variables, making it suitable
for modeling the multivariate spray statistics, where the velocity, position, and diameter
features are likely to exhibit intricate dependencies.

It is based on the assumption that the data are generated from a mixture of multiple
Gaussian distributions. Each Gaussian component represents a cluster or mode in the
data, and the GMM aims to estimate the parameters of these components to best fit the
observed data. The concept is visualized for a bimodal univariate distribution in Figure 6.
As evident, if the number of Gaussian components is high enough, the GMM is able to
match the ground truth almost exactly.

Ground truth
GMM
Components

(a)

Ground truth
GMM
Components

(b)

Figure 6. Visualization of a GMM with n components for a bimodal univariate distribution. (a) n = 2;
(b) n = 5.

Given a dataset X = {x1, x2, . . . , xM} with M data points, the GMM assumes that each
data point xi is generated from one of N Gaussian components with probabilities wn, where
n ∈ {1, 2, . . . , N}.

The GMM can be mathematically represented as follows:

p(xi|θ) =
N

∑
n=1

wnN (xi|µn, Σn) (3)

where

θ = {µ1, µ2, . . . , µN , Σ1, Σ2, . . . , ΣN , w1, w2, . . . , wN} are the parameters of the GMM,
µn is the mean vector of the n-th Gaussian component,
Σn is the covariance matrix of the n-th Gaussian component, and
wn is the weight of the n-th Gaussian component, representing the probability of
selecting that component.

Herein, the mean vector represents the central tendency of the data points belonging
to that component. It defines the center of a data cluster in the feature space; the covariance
matrix characterizes the spread and orientation of the data points within the cluster and
captures the interdependencies between different features; and the weight of each compo-
nent represents the relative contribution of that Gaussian to the overall mixture. In other
words, it indicates the likelihood of a data point belonging to a specific cluster.

The goal of GMM training is to find the optimal values for θ that maximize the
likelihood of the observed data. One of the main challenges in learning Gaussian mixture
models from unlabeled data is the lack of knowledge about which points belong to which
latent component. However, the expectation–maximization (EM) algorithm provides a
well-founded statistical approach to address this issue through an iterative process [27].
The EM algorithm consists of two steps: the E-step and the M-step. In the E-step, the
algorithm computes the posterior probabilities, or responsibilities, of each data point xi
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belonging to the n-th Gaussian component. These probabilities are denoted as rin and
represent the soft assignments of data points to the different components. The E-step can
be expressed as:

rin =
wnN (xi|µn, Σn)

∑N
j=1 wjN (xi|µj, Σj)

(4)

where N (xi|µn, Σn) is the multivariate Gaussian probability density function of data point
xi with mean µn and covariance matrix Σn.

In the M-step, the algorithm updates the model parameters θ based on the responsibil-
ities calculated in the E-step. The updated parameters can be computed as follows:

µn =
∑M

i=1 rinxi

∑M
i=1 rin

Σn =
∑M

i=1 rin(xi − µn)(xi − µn)
T

∑M
i=1 rin

wn =
1
M

M

∑
i=1

rin

(5)

The EM algorithm iterates between the E-step and M-step until the model parameters
converge to a stable solution or a predefined stopping criterion is met. For more details
about the EM algorithm for GMM, refer to Chapter 9 of [27].

Model Selection, Initialization, and Evaluation

In an EM algorithm, random components are initially assumed, which can be centered
on data points, learned from k-means, or even simply normally distributed around the
origin. For each data point, the probability of it being generated by each component of the
model is computed. The model’s parameters are then adjusted to maximize the likelihood
of the data given these assignments. By repeating this process iteratively, it is ensured
that a local optimum is reached by the algorithm. Therefore, during its implementation,
two factors need to be decided a priori: (i) the number of Gaussian components, which
determines the model complexity, and (ii) the initialization method. In this work, we
fit a GMM for each operating point using scikit-learn [28] with full covariance matrices.
We increase the number of mixture components up to 30 to explore various model complex-
ities. For each case, the model is trained on the data with 20 random k-means initializations,
and the best result is selected. Once the training is completed, the GMM is treated as
a generative model, and synthetic droplet distributions of the same size as the training
datasets are sampled from each mixture. These synthetic samples are then compared to the
training data.

It should be emphasized that evaluating the fit of the Gaussian mixture model is a chal-
lenging task, especially when dealing with higher-dimensional dependencies. While uni-
variate and bivariate distributions can be visually analyzed, assessing higher-dimensional
dependencies requires a different approach. To tackle this, we employ the Hellinger dis-
tance, a measure of similarity between two probability distributions.

The Hellinger distance H is defined for two empirical distributions P and Q with
densities p and q, respectively. It is computed using the number of bins k and is given by
the equation:

H =
1√
2

√√√√ k

∑
i=1

(
√

pi −
√

qi)
2 , (6)

This distance can be computed not only for univariate marginal distributions but also
for the multivariate joint distribution. It takes a value of one when there is no overlap be-
tween the distributions and a value of zero when they are identical. However, determining
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the threshold for a good fit is not straightforward due to noise introduced by finite sample
sizes in both training and sampled data (the noise in the Hellinger distance depends on the
number of bins k and the sample size M). To quantify the distance H to the training data,
we utilize another distance Href, which defines the distance between two synthetic data
sets sampled from the same mixture to serve as a “sampling noise”. If the distance H to the
training data is comparable to this “sampling noise”, it is reasonable to classify the model
as well fitted. We thusly define a loss function L as

L(n) =
1
4

4

∑
f=1

(
Hf(n)− Hf, ref

)
+
(

H4D(n)− H4D, ref
)

. (7)

Herein, the first term measures the dissimilarities between the four marginal distri-
butions through the distances Hf, while the second term quantifies the multivariate dis-
crepancies between the GMM and the reference data points through the four-dimensional
distance H4D. In both terms, we subtract the mean of the corresponding reference distance
over all mixtures Href to account for noise. It should be noted that the magnitude of the
distance in high-dimensional 4D data space is expected to be larger; hence, the loss function
defined above has an implicit bias to the second term. In other words, it is more descrip-
tive with regard to the multivariate similarities between the GMM predictions and the
reference data.

Additionally, we fit and sample from suitable analytical univariate distributions for
each droplet feature to establish a benchmark in order to assess the capabilities of GMMs
of different complexities to represent univariate distributions. Table 2 shows the assumed
analytical distribution functions for each feature: exponentiated Weibull for D, Johnson SB
for r, log-normal for uax, and log-normal for urad.

Table 2. Analytical univariate distribution functions for each droplet feature. These distributions are
used as a benchmark model to assess the predictive capabilities of the GMM.

Feature D r uax urad

Distribution Exponentiated
Weibull Johnson SB Log-normal Log-normal

3. Results and Discussions
3.1. Assessment of Model Accuracy and Complexity

The first step of the analysis is to determine the appropriate level of complexity, i.e.,
the number of mixture components needed to accurately represent the spray characteristics
of the SPH simulation data. This is achieved by measuring the dissimilarity between CDFs
obtained by the GMM model and the ground truth.

Figure 7 displays the Hellinger distances H for various distributions as a function
of the number of Gaussians n for OP4. The computed distances were obtained using
30 bins (k = 30 in Equation (6)). Herein, we examine (i) four marginal distributions,
diameter D, radial coordinate r, axial velocity uax, and radial velocity urad, (ii) as well as
the the distances in the four-dimensional data space. It is seen that for all four marginal
distributions, the computed distances between the training data and the data sets sampled
from the GMM do not converge to the level of uncertainty, which is characterized by the
sampling noise in Figure 7. Although an initial downward trend is discernible for all
features, the distances for diameter and radial coordinate distributions start to increase
again at around n ≈ 10. As for the velocity components, their distances appear to fluctuate
around a relatively constant value higher than the uncertainty after the initial decrease.
Nevertheless, it is worth noting that the magnitude of distances is very small, and lower
than the benchmark determined through the distance between the training data and
assumed analytical distributions from Table 2. This comparison indicates that while there is
no full convergence, the GMM fit leads to a satisfactory accuracy even with few Gaussians
for the marginal distributions (Figure 7a–d). Notably and of greater significance, when
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we compare the Hellinger distances in the 4D space, the change in multivariate distances
with an increasing number of Gaussians (i.e., model complexity) does not exhibit the
same level of fluctuations. As shown in Figure 7e, the distance decreases more steadily
and reaches the level of uncertainty at n = 25. This indicates a smoother convergence
compared to the individual univariate distributions. Moreover, it becomes apparent that
the benchmark assumption of the analytical marginal distributions without any statistical
interdependencies is not sufficient to model the training data in the multivariate case, as it
fails to account for the correlations between the different features. This comparison clearly
underscores the importance of employing multivariate statistical modeling to accurately
capture the intricate relationships and dependencies within the spray characteristics.
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Figure 7. Evolution of Hellinger distances H as a measure of dissimilarity between the model pre-
dictions and the ground truth (GT) with increasing number of Gaussians (n) in GMM for OP4.
(a) Diameter D; (b) radial coordinate r; (c) axial velocity uax; (d) radial velocity urad; (e) 4D
droplet data.

Figure 8 illustrates the evolution of the custom loss function as defined by Equation (7)
with an increasing model complexity for all operating points. In this representation, the
loss (L(n)) for a given number of Gaussians (n) is normalized by the loss calculated using
only one Gaussian in the GMM, providing a better interpretability as the scaled loss
varies between one and zero. Notably, the normalized loss tends to increase as the spray
statistics become more complex with an increasing mass load for a given model complexity.
Interestingly, the GMM exhibits the ability to yield accurate results with fewer components
for simpler cases, such as OP1. Moreover, for each operating point, the rolling mean of the
loss functions seems to reach a plateau at a certain number of Gaussians before decreasing
again, finally stabilizing at a steady level. This characteristic behavior is evident for all
operating points, but convergence occurs later as the load increases.
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Figure 8. Normalized loss function L/L(1) using multivariate Hellinger distance. (a) Exact values;
(b) rolling mean.

These observations highlight the well-known trade-off between model complexity and
accuracy. As the spray characteristics become more intricate, the GMM requires a higher
number of components to achieve a satisfactory representation. However, the analysis also
reveals that, for certain operating points, a relatively low number of Gaussians may still be
sufficient to capture the essential features of the data effectively. This information is crucial
for selecting the optimal model configuration that strikes the right balance between com-
plexity and performance in modeling spray characteristics. Another crucial consideration
is the risk of overfitting if the model complexity is unnecessarily increased. For example,
for OP1, using more than 15 Gaussians may lead to overfitting. Overfitting can result in a
model that is too complex and excessively tailored to the training data, which may lead to
poor generalization and a subpar performance on new, unseen data.

To address these questions, we identify two GMMs for further investigation, one with
n = 12 and the other with n = 25. These model complexities correspond to the points where
the loss function reaches a steady level for OP1 and OP4. To assess the model error concerning
the marginal distributions, we analyze the deviation of the cumulative distribution functions
between the training data and the sampled data, denoted as ∆Fi = Fi,Train− Fi,GMM, as shown
in Figure 9.

For OP1, there is no significant difference between the two mixtures. Both GMMs
reproduce the marginal distributions well, with maximum errors ranging between 1%
and 3%. This suggests that increasing the number of components beyond the optimum
complexity only results in splitting the noise-related Gaussian components and does not
significantly affect the model’s overall accuracy. In other words, an increased model
complexity does not lead to a significant generalization penalty. However, for OP4, the
GMM with n = 12 proves to be insufficient in modeling the distribution of the radial
coordinate, as the error is more than twice as large compared to OP1. By increasing the
model complexity to n = 25, this error is notably reduced to a similar level as observed for
the other operating points. While the improvement from n = 12 to n = 25 is not as drastic
for the other features, it is still significant.
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Figure 9. Deviation of the cumulative distribution functions of the training data and the sampled
data with increased model complexity. (a) n = 12; (b) n = 25.

These findings emphasize the significance of selecting an appropriate model complex-
ity that can accurately capture the underlying distribution of the data for each operating
point. Furthermore, it is essential to note that the GMM is not an over-parameterized model
like artificial-neural-network-based generative models such as variational autoencoders
(VAEs) or generative adversarial networks (GANs). Therefore, the risk of overfitting is
considerably lower and less likely to be a concern in a GMM-based approach.

3.2. Conservation of Feature Correlations

One crucial expectation from generative models is their ability to preserve the un-
derlying correlations observed in the training set (i.e., source domain) when generating
synthetic spray statistics. To evaluate the GMM’s performance in this regard, we quantify
the feature correlations using Pearson correlation coefficients, as depicted in Figure 10.

Remarkably, even at a moderate model complexity, i.e., n = 12, the GMM effectively
captures these correlations. Both mixtures closely reproduce the correlation coefficients of
the training data, demonstrating the model’s ability to preserve the linear relationships
between the features even with a low number of Gaussians. However, it is important to
note that the Pearson correlation coefficients cannot fully capture non-linear relationships,
as discussed in Section 2.1. To gain further insights, a visual evaluation of the bivariate
joint PDFs becomes necessary. A selection of these joint PDFs is presented in Figure 11.

The linear correlation between radial coordinate and radial velocity on the right hand
side of the figure is well resolved by both mixtures. Nevertheless, the mixture with n = 12
struggles to capture the characteristic shape of the bivariate PDF between radial coordinate
and axial velocity, which is present in the training data. This observation suggests that a
higher number of components is necessary to model probability densities of such complex
shapes. However, with n = 25, the GMM successfully reproduces the sampled data,
visually aligning with the distribution of the training data.
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Figure 10. Comparison of the Pearson correlation coefficients of the training data and sampled data.
Solid bars denote the ground truth, while dashed bars give the GMM predictions. Colors denote the
operating points. (a) n = 12; (b) n = 25.
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Figure 11. Bivariate joint PDFs of radial coordinate and axial velocity (left) and radial coordinate
and radial velocity (right) of the GMM and the training data for OP4. (a) n = 12; (b) n = 25;
(c) training data.
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4. Conclusions

In summary, the GMM proves to be adept at capturing linear correlations between
features, even at moderate model complexities. However, for more intricate non-linear
relationships, a higher number of components is required for an accurate representation.
The visual evaluation of the bivariate joint PDFs provides valuable insights into the model’s
ability to preserve complex correlations in the spray data, making it a powerful tool for the
accurate statistical modeling of spray characteristics across different operating conditions.
We are confident that the approach presented in this study can be readily extended to
incorporate additional droplet features, such as shape and temperature, without incur-
ring unreasonable complexities. By increasing the number of components, the Gaussian
mixture models (GMMs) can effectively accommodate these new features, enhancing the
comprehensiveness of spray simulations. The findings of this study demonstrate that
GMMs offer a promising and easily implementable injection model for improving spray
simulations in the future. With their ability to accurately capture spray characteristics at
any arbitrary state, GMMs hold the potential to serve as valuable tools for constructing
meta models. These meta models could bridge the gap between the efficiency of common
low-order approaches and the accuracy of high-fidelity simulations in numerical spray
modeling. Overall, the versatility and efficiency of GMMs make them an attractive choice
for advancing spray engineering and optimizing combustion processes. By incorporating
a wide range of droplet features and developing meta models, GMMs offer a promising
path toward achieving improved spray simulations and enhancing our understanding of
complex spray dynamics in jet engine combustors.
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