1,044 research outputs found

    Air-sea interaction in the tropical Pacific Ocean

    Get PDF
    Charts of 3-month sea surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted

    Natural history of Arabidopsis thaliana and oomycete symbioses

    Get PDF
    Molecular ecology of plant–microbe interactions has immediate significance for filling a gap in knowledge between the laboratory discipline of molecular biology and the largely theoretical discipline of evolutionary ecology. Somewhere in between lies conservation biology, aimed at protection of habitats and the diversity of species housed within them. A seemingly insignificant wildflower called Arabidopsis thaliana has an important contribution to make in this endeavour. It has already transformed botanical research with deepening understanding of molecular processes within the species and across the Plant Kingdom; and has begun to revolutionize plant breeding by providing an invaluable catalogue of gene sequences that can be used to design the most precise molecular markers attainable for marker-assisted selection of valued traits. This review describes how A. thaliana and two of its natural biotrophic parasites could be seminal as a model for exploring the biogeography and molecular ecology of plant–microbe interactions, and specifically, for testing hypotheses proposed from the geographic mosaic theory of co-evolution

    Covering Problems for Partial Words and for Indeterminate Strings

    Full text link
    We consider the problem of computing a shortest solid cover of an indeterminate string. An indeterminate string may contain non-solid symbols, each of which specifies a subset of the alphabet that could be present at the corresponding position. We also consider covering partial words, which are a special case of indeterminate strings where each non-solid symbol is a don't care symbol. We prove that indeterminate string covering problem and partial word covering problem are NP-complete for binary alphabet and show that both problems are fixed-parameter tractable with respect to kk, the number of non-solid symbols. For the indeterminate string covering problem we obtain a 2O(klog⁥k)+nkO(1)2^{O(k \log k)} + n k^{O(1)}-time algorithm. For the partial word covering problem we obtain a 2O(klog⁥k)+nkO(1)2^{O(\sqrt{k}\log k)} + nk^{O(1)}-time algorithm. We prove that, unless the Exponential Time Hypothesis is false, no 2o(k)nO(1)2^{o(\sqrt{k})} n^{O(1)}-time solution exists for either problem, which shows that our algorithm for this case is close to optimal. We also present an algorithm for both problems which is feasible in practice.Comment: full version (simplified and corrected); preliminary version appeared at ISAAC 2014; 14 pages, 4 figure

    The molecular basis of host specialization in bean pathovars of Pseudomonas syringae

    Get PDF
    Biotrophic phytopathogens are typically limited to their adapted host range. In recent decades, investigations have teased apart the general molecular basis of intraspecific variation for innate immunity of plants, typically involving receptor proteins that enable perception of pathogen-associated molecular patterns or avirulence elicitors from the pathogen as triggers for defense induction. However, general consensus concerning evolutionary and molecular factors that alter host range across closely related phytopathogen isolates has been more elusive. Here, through genome comparisons and genetic manipulations, we investigate the underlying mechanisms that structure host range across closely related strains of Pseudomonas syringae isolated from different legume hosts. Although type III secretionindependent virulence factors are conserved across these three strains, we find that the presence of two genes encoding type III effectors (hopC1 and hopM1) and the absence of another (avrB2) potentially contribute to host range differences between pathovars glycinea and phaseolicola. These findings reinforce the idea that a complex genetic basis underlies host range evolution in plant pathogens. This complexity is present even in host–microbe interactions featuring relatively little divergence among both hosts and their adapted pathogens

    On Maximal Unbordered Factors

    Get PDF
    Given a string SS of length nn, its maximal unbordered factor is the longest factor which does not have a border. In this work we investigate the relationship between nn and the length of the maximal unbordered factor of SS. We prove that for the alphabet of size σ≄5\sigma \ge 5 the expected length of the maximal unbordered factor of a string of length~nn is at least 0.99n0.99 n (for sufficiently large values of nn). As an application of this result, we propose a new algorithm for computing the maximal unbordered factor of a string.Comment: Accepted to the 26th Annual Symposium on Combinatorial Pattern Matching (CPM 2015

    A characterization of Schauder frames which are near-Schauder bases

    Full text link
    A basic problem of interest in connection with the study of Schauder frames in Banach spaces is that of characterizing those Schauder frames which can essentially be regarded as Schauder bases. In this paper, we give a solution to this problem using the notion of the minimal-associated sequence spaces and the minimal-associated reconstruction operators for Schauder frames. We prove that a Schauder frame is a near-Schauder basis if and only if the kernel of the minimal-associated reconstruction operator contains no copy of c0c_0. In particular, a Schauder frame of a Banach space with no copy of c0c_0 is a near-Schauder basis if and only if the minimal-associated sequence space contains no copy of c0c_0. In these cases, the minimal-associated reconstruction operator has a finite dimensional kernel and the dimension of the kernel is exactly the excess of the near-Schauder basis. Using these results, we make related applications on Besselian frames and near-Riesz bases.Comment: 12 page

    GaAs:Mn nanowires grown by molecular beam epitaxy of (Ga,Mn)As at MnAs segregation conditions

    Full text link
    GaAs:Mn nanowires were obtained on GaAs(001) and GaAs(111)B substrates by molecular beam epitaxial growth of (Ga,Mn)As at conditions leading to MnAs phase separation. Their density is proportional to the density of catalyzing MnAs nanoislands, which can be controlled by the Mn flux and/or the substrate temperature. Being rooted in the ferromagnetic semiconductor (Ga,Mn)As, the nanowires combine one-dimensional properties with the magnetic properties of (Ga,Mn)As and provide natural, self assembled structures for nanospintronics.Comment: 13 pages, 6 figure

    On Feeding Business Systems with Linked Resources from the Web of Data

    Get PDF
    Business systems that are fed with data from the Web of Data require transparent interoperability. The Linked Data principles establish that different resources that represent the same real-world entities must be linked for such purpose. Link rules are paramount to transparent interoperability since they produce the links between resources. State-of-the-art link rules are learnt by genetic programming and build on comparing the values of the attributes of the resources. Unfortunately, this approach falls short in cases in which resources have similar values for their attributes, but represent different real-world entities. In this paper, we present a proposal that leverages a genetic programming that learns link rules and an ad-hoc filtering technique that boosts them to decide whether the links that they produce must be selected or not. Our analysis of the literature reveals that our approach is novel and our experimental analysis confirms that it helps improve the F1 score by increasing precision without a significant penalty on recall.Ministerio de EconomĂ­a y Competitividad TIN2013-40848-RMinisterio de EconomĂ­a y Competitividad TIN2016- 75394-
    • 

    corecore