6 research outputs found

    Characterization of manmade and recycled cellulosic fibers for their application in building materials

    Get PDF
    The aim of this study was to characterize two types of cellulosic fibers obtained from bleached wood pulp and unbleached recycled waste paper with different cellulose content (from 47.4 percent up to 82 percent), to compare and to analyze the potential use of the recycled fibers for building application, such as plastering mortar. Changes in the chemical composition, cellulose crystallinity and degree of polymerization of the fibers were found. The recycled fibers of lower quality showed heterogeneity in the fiber sizes (width and length), and they had greater surface roughness in comparison to high purity wood pulp samples. The high purity fibers (cellulose content > 80.0 percent) had greater crystallinity and more homogeneous and smooth surfaces than the recycled fibers. The presence of calcite and kaolinite in all of the recycled cellulosic fibers samples was confirmed, whereas only one wood pulp sample contained calcite. The influence of the chemical composition was reflected in the fiber density values. Changes in the chemical composition and cellulose structure of the fibers affected the specific surface area, porosity and thermo physical properties of the fibers. More favorable values of thermal conductivity were reached for the recycled fibers than for the wood pulp samples. Testing the suitability of the recycled fibers with inorganic impurities originating from the paper-making processes for their use as fillers in plastering mortars (0.5 wt.% fiber content of the total weight of the filler and binder) confirmed their application by achieving a compressive strength value of 28 day-cured fiber-cement mortar required by the standard as well as by measured more favorable value of capillary water absorption coefficient.Web of Science7111145112

    A unique case of AH-dominant type nodular pulmonary amyloidosis presenting as a spontaneous pneumothorax: a case report and review of the literature

    Get PDF
    Amyloidosis is a rare metabolic disorder primarily brought on by misfolding of an autologous protein, which causes its local or systemic deposition in an aberrant fibrillar form. It is quite rare for pulmonary tissue to be impacted by amyloidosis; of the three forms it can take when involving pulmonary tissue, nodular pulmonary amyloidosis is the most uncommon. Nodular pulmonary amyloidosis rarely induces clinical symptoms, and most often, it is discovered accidentally during an autopsy or via imaging techniques. Only one case of nodular pulmonary amyloidosis, which manifested as a spontaneous pneumothorax, was found in the literature. In terms of more precise subtyping, nodular amyloidosis is typically AL or mixed AL/AH type. No publications on AH-dominant type of nodular amyloidosis were found in the literature. We present a case of an 81 years-old male with nodular pulmonary AH-dominant type amyloidosis who presented with spontaneous pneumothorax. For a deeper understanding of the subject, this study also provides a review of the literature on cases with nodular pulmonary amyloidosis in relation to precise amyloid fibril subtyping. Since it is often a difficult process, accurate amyloid type identification is rarely accomplished. However, this information is very helpful for identifying the underlying disease process (if any) and outlining the subsequent diagnostic and treatment steps. Even so, it is crucial to be aware of this unit and make sure it is taken into consideration when making a differential diagnosis of pulmonary lesions

    Magnetically Functionalized Moss Biomass as Biosorbent for Efficient Co2+ Ions and Thioflavin T Removal

    No full text
    Microwave synthesized iron oxide nanoparticles and microparticles were used to prepare a magnetically responsive biosorbent from Rhytidiadelphus squarrosus moss for the rapid and efficient removal of Co2+ ions and thioflavin T (TT). The biocomposite was extensively characterized using Fourier transformed infrared (FTIR), XRD, SEM, and EDX techniques. The magnetic biocomposite showed very good adsorption properties toward Co2+ ions and TT e.g., rapid kinetics, high adsorption capacity (218 μmol g−1 for Co and 483 μmol g−1 for TT), fast magnetic separation, and good reusability in four successive adsorption–desorption cycles. Besides the electrostatic attraction between the oxygen functional moieties of the biomass surface and both Co2+ and TT ions, synergistic interaction with the –FeOH groups of iron oxides also participates in adsorption. The obtained results indicate that the magnetically responsive biocomposite can be a suitable, easily separable, and recyclable biosorbent for water purification

    Proteome Mapping of Cervical Mucus and Its Potential as a Source of Biomarkers in Female Tract Disorders

    No full text
    Cervical mucus (CM) is a viscous fluid that is produced by the cervical glands and functions as a uterine cervix plug. Its viscosity decreases during ovulation, providing a window for non-invasive sampling. This study focuses on proteomic characterization of CM to evaluate its potential as a non-invasively acquired source of biomarkers and in understanding of molecular (patho)physiology of the female genital tract. The first objective of this work was to optimize experimental workflow for CM processing and the second was to assess differences in the proteomic composition of CM during natural ovulatory cycles obtained from intrauterine insemination (IUI) cycles and in vitro fertilization (IVF) cycles with controlled ovarian hyperstimulation. Proteomic analysis of CM samples revealed 4370 proteins involved in processes including neutrophil degranulation, cellular stress responses, and hemostasis. Differential expression analysis revealed 199 proteins enriched in IUI samples and 422 enriched in IVF. The proteins enriched in IUI were involved in phosphatidic acid synthesis, responses to external stimulus, and neutrophil degranulation, while those enriched in IVF samples were linked to neutrophil degranulation, formation of a cornified envelope and hemostasis. Subsequent analyses clarified the protein composition of the CM and how it is altered by hormonal stimulation of the uterus

    Image1_A unique case of AH-dominant type nodular pulmonary amyloidosis presenting as a spontaneous pneumothorax: a case report and review of the literature.png

    No full text
    Amyloidosis is a rare metabolic disorder primarily brought on by misfolding of an autologous protein, which causes its local or systemic deposition in an aberrant fibrillar form. It is quite rare for pulmonary tissue to be impacted by amyloidosis; of the three forms it can take when involving pulmonary tissue, nodular pulmonary amyloidosis is the most uncommon. Nodular pulmonary amyloidosis rarely induces clinical symptoms, and most often, it is discovered accidentally during an autopsy or via imaging techniques. Only one case of nodular pulmonary amyloidosis, which manifested as a spontaneous pneumothorax, was found in the literature. In terms of more precise subtyping, nodular amyloidosis is typically AL or mixed AL/AH type. No publications on AH-dominant type of nodular amyloidosis were found in the literature. We present a case of an 81 years-old male with nodular pulmonary AH-dominant type amyloidosis who presented with spontaneous pneumothorax. For a deeper understanding of the subject, this study also provides a review of the literature on cases with nodular pulmonary amyloidosis in relation to precise amyloid fibril subtyping. Since it is often a difficult process, accurate amyloid type identification is rarely accomplished. However, this information is very helpful for identifying the underlying disease process (if any) and outlining the subsequent diagnostic and treatment steps. Even so, it is crucial to be aware of this unit and make sure it is taken into consideration when making a differential diagnosis of pulmonary lesions.</p
    corecore