2,754 research outputs found

    A methodology for determining optimum microwave remote sensor parameters

    Get PDF
    There are no author-identified significant results in this report

    Discovery of Multi-Phase Cold Accretion in a Massive Galaxy at z=0.7

    Full text link
    We present detailed photo+collisional ionization models and kinematic models of the multi-phase absorbing gas, detected within the HST/COS, HST/STIS, and Keck/HIRES spectra of the background quasar TON 153, at 104 kpc along the projected minor axis of a star-forming spiral galaxy (z=0.6610). Complementary g'r'i'Ks photometry and stellar population models indicate that the host galaxy is dominated by a 4 Gyr stellar population with slightly greater than solar metallicity and has an estimated log(M*)=11 and a log(Mvir)=13. Photoionization models of the low ionization absorption, (MgI, SiII, MgII and CIII) which trace the bulk of the hydrogen, constrain the multi-component gas to be cold (logT=3.8-5.2) and metal poor (-1.68<[X/H]<-1.64). A lagging halo model reproduces the low ionization absorption kinematics, suggesting gas coupled to the disk angular momentum, consistent with cold accretion mode material in simulations. The CIV and OVI absorption is best modeled in a separate collisionally ionized metal-poor (-2.50<[X/H]<-1.93) warm phase with logT=5.3. Although their kinematics are consistent with a wind model, given the 2-2.5dex difference between the galaxy stellar metallicity and the absorption metallicity indicates the gas cannot arise from galactic winds. We discuss and conclude that although the quasar sight-line passes along the galaxy minor axis at projected distance of 0.3 virial radii, well inside its virial shock radius, the combination of the relative kinematics, temperatures, and relative metallicities indicated that the multi-phase absorbing gas arises from cold accretion around this massive galaxy. Our results appear to contradict recent interpretations that absorption probing the projected minor axis of a galaxy is sampling winds.Comment: 16 pages, 11 figures, accepted for publication in MNRA

    Morphology of the Nuclear Disk in M87

    Get PDF
    A deep, fuly sampled diffraction limited (FWHM ~ 70 mas) narrow-band image of the central region in M87 was obtained with the Wide Filed and Planetary Camera 2 of the Hubble Space Telescope using the dithering technique. The H-alpha+[NII] continuum subtracted image reveals a wealth of details in the gaseous disk structure described earlier by Ford et al. (1994). The disk morphology is dominated by a well defined three-arm spiral pattern. In addition, the major spiral arms contain a large number of small "arclets" covering a range of sizes (0.1-0.3 arcsec = 10-30 pc). The overall surface brightness profile inside a radius ~1.5" (100 pc) is well represented by a power-law I(mu) ~ mu^(-1.75), but when the central ~40 pc are excluded it can be equally well fit by an exponential disk. The major axis position angle remains constant at about PA_disk ~ 6 deg for the innermost ~1", implying the disk is oriented nearly perpendicular to the synchrotron jet (PA_jet ~ 291 deg). At larger radial distances the isophotes twist, reflecting the gas distribution in the filaments connecting to the disk outskirts. The ellipticity within the same radial range is e = 0.2-0.4, which implies an inclination angle of i~35 deg. The sense of rotation combined with the dust obscuration pattern indicate that the spiral arms are trailing.Comment: 5 pages, 3 postscript figures, to appear in the Proceedings of the M87 Workshop, Ringberg castle, Germany, 15-19 Sep 1997, also available from http://jhufos.pha.jhu.edu/~zlatan/papers.htm

    Evaluation of the soil moisture prediction accuracy of a space radar using simulation techniques

    Get PDF
    Image simulation techniques were employed to generate synthetic aperture radar images of a 17.7 km x 19.3 km test site located east of Lawrence, Kansas. The simulations were performed for a space SAR at an orbital altitude of 600 km, with the following sensor parameters: frequency = 4.75 GHz, polarization = HH, and angle of incidence range = 7 deg to 22 deg from nadir. Three sets of images were produced corresponding to three different spatial resolutions; 20 m x 20 m with 12 looks, 100 m x 100 m with 23 looks, and 1 km x 1 km with 1000 looks. Each set consisted of images for four different soil moisture distributions across the test site. Results indicate that, for the agricultural portion of the test site, the soil moisture in about 90% of the pixels can be predicted with an accuracy of = + or - 20% of field capacity. Among the three spatial resolutions, the 1 km x 1 km resolution gave the best results for most cases, however, for very dry soil conditions, the 100 m x 100 m resolution was slightly superior

    Image synthesis for SAR system, calibration and processor design

    Get PDF
    The Point Scattering Method of simulating radar imagery rigorously models all aspects of the imaging radar phenomena. Its computational algorithms operate on a symbolic representation of the terrain test site to calculate such parameters as range, angle of incidence, resolution cell size, etc. Empirical backscatter data and elevation data are utilized to model the terrain. Additionally, the important geometrical/propagation effects such as shadow, foreshortening, layover, and local angle of incidence are rigorously treated. Applications of radar image simulation to a proposed calibrated SAR system are highlighted: soil moisture detection and vegetation discrimination

    Using Astrometry to Deblend Microlensing Events

    Get PDF
    We discuss the prospect of deblending microlensing events by observing astrometric shifts of the lensed stars. Since microlensing searches are generally performed in very crowded fields, it is expected that stars will be confusion limited rather than limited by photon statistics. By performing simulations of events in crowded fields, we find that if we assume a dark lens and that the lensed star obeys a power law luminosity function, n(L)Lβn(L)\propto L^{-\beta}, over half the simulated events show a measurable astrometric shift. Our simulations included 20000 stars in a 256×256256\times 256 Nyquist sampled CCD frame. For β=2\beta=2, we found that 58% of the events were significantly blended (F/Ftot0.9)(F_{\ast}/F_{tot}\leq 0.9), and of those, 73% had a large astrometric shift (0.5pixels)(\geq 0.5 pixels). Likewise, for β=3\beta=3, we found that 85% of the events were significantly blended, and that 85% of those had large shifts. Moreover, the shift is weakly correlated to the degree of blending, suggesting that it may be possible not only to detect the existence of a blend, but also to deblend events statistically using shift information.Comment: 24 pages, 7 postscript Figure

    Optical identification of the companion to PSR J1911-5958A, the pulsar binary in the outskirts of NGC 6752

    Full text link
    We report on the identification of the optical counterpart of the binary millisecond pulsar PSR J1911-5958A, located in the outskirts of the globular cluster NGC 6752. At the position of the pulsar we find an object with V=22.08, B-V=0.38, U-B=-0.49. The object is blue with respect to the cluster main sequence by 0.8 magnitudes in B-V. We argue that the object is the white dwarf companion of the pulsar. Comparison with white dwarf cooling models shows that this magnitude and colors are consistent with a low-mass white dwarf at the distance of NGC 6752. If associated with NGC 6752, the white dwarf is relatively young, <2 Gyr, which sets constraints on the formation of the binary and its ejection from the core of the globular cluster.Comment: Accepted for publication in A&A Letters (September 1st, 2003

    Development of a New, Precise Near-infrared Doppler Wavelength Reference: A Fiber Fabry-Perot Interferometer

    Full text link
    We present the ongoing development of a commercially available Micron Optics fiber-Fabry Perot Interferometer as a precise, stable, easy to use, and economic spectrograph reference with the goal of achieving <1 m/s long term stability. Fiber Fabry-Perot interferometers (FFP) create interference patterns by combining light traversing different delay paths. The interference creates a rich spectrum of narrow emission lines, ideal for use as a precise Doppler reference. This fully photonic reference could easily be installed in existing NIR spectrographs, turning high resolution fiber-fed spectrographs into precise Doppler velocimeters. First light results on the Sloan Digital Sky Survey III (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph and several tests of major support instruments are also presented. These instruments include a SuperK Photonics fiber supercontinuum laser source and precise temperature controller. A high resolution spectrum obtained using the NIST 2-m Fourier transform spectrometer (FTS) is also presented. We find our current temperature control precision of the FFP to be 0.15 mK, corresponding to a theoretical velocity stability of 35 cm/s due to temperature variations of the interferometer cavity.Comment: 16 pages, 11 figures. To appear in the proceedings of the SPIE 2012 Astronomical Instrumentation and Telescopes conferenc

    Simulation of orbital radar images

    Get PDF
    Many of the questions that arise concerning the operating parameters for spaceborne synthetic aperture imaging radar systems can be addressed in a cost-effective manner by using simulation techniques. This can include use of airborne images, Seasat images, and computer simulation. The first computer simulation of spaceborne radar imagery has been analyzed for system definition studies. Analysis of the simulation indicates that incidence angles as small as 30° are useful for general terrain geomorphologic analysis
    corecore