8 research outputs found

    Quantum state tomography of slow and stored light

    Get PDF
    Quantum information can be transferred from a beam of light to a cloud of atoms and controllably released at a later time. These quantum memory devices are fundamental to applications in quantum information science, quantum computing, and quantum communication. We propose a technique for measuring the quantum state of light that has been stored and released from a quantum memory system. This technique does not require careful mode matching can in fact be used to optimize the measured field mode without a priori knowledge of the stored light

    Collimated blue light generation in rubidium vapor

    Get PDF
    We describe an experiment for generating and characterizing a beam of collimated blue light (CBL) in a rubidium vapor.Two low-power, grating-feedback diode lasers, operating at 780.2 nm (5S3/2 → 5D5/2) and 776.0 nm (5P3/2 → 5D5/2), respectively, provide step-wise excitation to the 5D excited state in rubidium. Under the right experimental conditions, cascade decay through the 6P excited state will yield a collimated blue (420-nm) beam of light with high temporal and spatial coherence. We investigate the production of a blue beam under a variety of experimental conditions and characterize the spatial coherence and spectral characteristics. This experiment provides advanced undergraduate students with a unique opportunity to investigate nonlinear optical phenomena in the laboratory and uses equipment that is commonly available in laboratories equipped to investigate diode-laser-based absorption spectroscopy in rubidium

    Collimated blue light generation in rubidium vapor

    Get PDF
    We describe an experiment for generating and characterizing a beam of collimated blue light (CBL) in a rubidium vapor.Two low-power, grating-feedback diode lasers, operating at 780.2 nm (5S3/2 → 5D5/2) and 776.0 nm (5P3/2 → 5D5/2), respectively, provide step-wise excitation to the 5D excited state in rubidium. Under the right experimental conditions, cascade decay through the 6P excited state will yield a collimated blue (420-nm) beam of light with high temporal and spatial coherence. We investigate the production of a blue beam under a variety of experimental conditions and characterize the spatial coherence and spectral characteristics. This experiment provides advanced undergraduate students with a unique opportunity to investigate nonlinear optical phenomena in the laboratory and uses equipment that is commonly available in laboratories equipped to investigate diode-laser-based absorption spectroscopy in rubidium

    Collimated blue light generation in rubidium vapor Collimated blue light generation in rubidium vapor

    No full text
    We describe an experiment for generating and characterizing a beam of collimated blue light (CBL) in a rubidium vapor. Two low-power, grating-feedback diode lasers, operating at 780.2 nm (5S 1=2 ! 5P 3=2 ) and 776.0 nm (5P 3=2 ! 5D 5=2 ), respectively, provide step-wise excitation to the 5D excited state in rubidium. Under the right experimental conditions, cascade decay through the 6P excited state will yield a collimated blue (420-nm) beam of light with high temporal and spatial coherence. We investigate the production of a blue beam under a variety of experimental conditions and characterize the spatial coherence and spectral characteristics. This experiment provides advanced undergraduate students with a unique opportunity to investigate nonlinear optical phenomena in the laboratory and uses equipment that is commonly available in laboratories equipped to investigate diode-laser-based absorption spectroscopy in rubidium. V C 2013 American Association of Physics Teachers
    corecore