542 research outputs found

    The campsite dykes: A window into the early post-solidification history of the Skaergaard Intrusion, East Greenland

    Get PDF
    publication-status: Publishedtypes: ArticleThis is an open access article.The Skaergaard Intrusion of East Greenland is cut by several generations of dykes, the earliest of which is thought to have intruded shortly after solidification of the Skaergaard. Two ~ 6 m wide doleritic dykes from the earliest generation are exposed in the campsite area near Homestead Bay of the Skaergaard Peninsula. One of the dykes (the Campsite Dyke) locally contains abundant xenoliths of troctolitic cumulate. The other (the Plagioclase-phyric Dyke) contains abundant large plagioclase phenocrysts. Cross-cutting relationships between the two dykes are not exposed. The median clinopyroxene–plagioclase–plagioclase dihedral angle, Θcpp, in the Campsite Dyke is 88–89.5°, whereas that of the Plagioclase-phyric Dyke is 79°. Using an empirical relationship between Θcpp and the duration of crystallisation derived from dolerite sills, the observed Θcpp suggests that the Campsite Dyke is the older of the two, intruding the Skaergaard when it had cooled to 920–970 °C. The Plagioclase-phyric Dyke intruded later, once the Skaergaard had cooled below 670 °C. The troctolitic xenoliths divide into two separate groups. Type A xenoliths have microstructures similar to those of the Skaergaard Layered Series although mineral compositions are generally more primitive than those of the exposed cumulates — this type of xenolith is likely to have been derived from either deeper levels in the Skaergaard Intrusion or from a closely-related underlying magma chamber. One Type A xenolith has mineral compositions and Θcpp consistent with an origin in LZb of the Layered Series — this xenolith contains partially inverted pigeonite, suggesting that inversion of low-Ca pyroxene in the lower part of the Layered Series took place after the intrusion had completely solidified. Type B xenoliths are characterized by plagioclase containing large and abundant melt inclusions. Comparison with the microstructures of glassy crystalline nodules from Iceland points to a multi-stage cooling history for Type B xenoliths, consistent with step-wise entrainment of partially crystallised material from a deep chamber. Type B xenoliths are very unlikely to have been derived from deeper levels in the Skaergaard chamber.We thank Madeleine Humphreys for her assistance in collecting samples from the Campsite area. We are grateful to Monica Price of the Oxford University Natural History Museum for access to samples from the Wager East Greenland collection, and to Christian Tegner and Kent Brooks for loan of the sample from the Campsite Dyke chill zone. John Maclennan loaned us material from Iceland and we both thank him and David Neave for interesting discussions about their microstructures. Insightful and helpful comments from Tony Morse and an anonymous reviewer greatly improved an earlier version of this contribution. QEMSCAN® is a registered trademark of FEI Company. FEI Company sponsored the QEMSCAN® analyses, which were completed by Dr Gavyn Rollinson, at Camborne School of Mines, University of Exeter, UK. This work was supported by the Natural Environment Research Council [grant numbers NE/F020325/1 and NE/J021520/1]

    Toward an understanding of disequilibrium dihedral angles in mafic rocks

    Get PDF
    [1] The median dihedral angle at clinopyroxene-plagioclase-plagioclase junctions in mafic rocks, Θcpp, is generally lower than equilibrium (109° ± 2°). Observation of a wide range of mafic bodies demonstrates that previous work on systematic variations of Θcpp is incorrect in several important respects. First, the spatial distribution of plagioclase compositional zoning demonstrates that the final geometry of three-grain junctions, and hence Θcpp, is formed during solidification (the igneous process): sub-solidus textural modification in most dolerites and gabbros, previously thought to be the dominant control on Θcpp, is insignificant. Θcpp is governed by mass transport constraints, the inhibiting effects of small pore size on crystallization, and variation in relative growth rates of pyroxene and plagioclase. During rapid cooling, pyroxene preferentially fills wider pores while the narrower pores remain melt-filled, resulting in an initial value of Θcpp of 78°, rather than 60° which would be expected if all melt-filled pores were filled with pyroxene. Lower cooling rates create a higher initial Θcpp due to changes in relative growth rates of the two minerals at the nascent three-grain junction. Low Θcpp (associated with cuspate clinopyroxene grains at triple junctions) can also be diagnostic of infiltration of previously melt-free rocks by late-stage evolved liquids (the metasomatic process). Modification of Θcpp by sub-solidus textural equilibration (the metamorphic process) is only important for fine-grained mafic rocks such as chilled margins and intraplutonic chill zones. In coarse-grained gabbros from shallow crustal intrusions the metamorphic process occurs only in the centers of oikocrysts, associated with rounding of chadacrysts

    Microstructural evolution of silicate immiscible liquids in ferrobasalts

    Get PDF
    Abstract: An experimental study of the microstructural evolution of an immiscible basaltic emulsion shows that the Fe-rich liquid forms homogeneously nucleated droplets dispersed in a continuous Si-rich liquid, together with droplets heterogeneously nucleated on plagioclase, magnetite, and pyroxene. Heterogeneous nucleation is likely promoted by localised compositional heterogeneities around growing crystals. The wetting angle of Fe-rich droplets on both plagioclase and magnetite increases with decreasing temperature. Droplet coarsening occurs by a combination of diffusion-controlled growth and Ostwald ripening, with an insignificant contribution from coalescence. Characteristic microstructures resulting from the interaction of immiscible Fe-rich liquid with crystal grains during crystal growth can potentially be used as an indicator of liquid unmixing in fully crystallised natural samples. In magma bodies < ~ 10 m in size, gravitationally driven segregation of immiscible Fe-rich droplets is unlikely to be significant

    From the outside to the inside: New insights on the main factors that guide seed dormancy and germination

    Get PDF
    The transition from a dormant to a germinating seed represents a crucial developmental switch in the life cycle of a plant. Subsequent transition from a germinating seed to an autotrophic organism also requires a robust and multi-layered control. Seed germination and seedling growth are multistep processes, involving both internal and external signals, which lead to a fine-tuning control network. In recent years, numerous studies have contributed to elucidate the molecular mechanisms underlying these processes: From light signaling and light-hormone crosstalk to the effects of abiotic stresses, from epigenetic regulation to translational control. However, there are still many open questions and molecular elements to be identified. This review will focus on the different aspects of the molecular control of seed dormancy and germination, pointing out new molecular elements and how these integrate in the signaling pathways already known
    • …
    corecore