2,235 research outputs found
Efficacy of nonselective optogenetic control of the medial septum over hippocampal oscillations: the influence of speed and implications for cognitive enhancement
Optogenetics holds great promise for both the dissection of neural circuits and the evaluation of theories centered on the temporal organizing properties of oscillations that underpin cognition. To date, no studies have examined the efficacy of optogenetic stimulation for altering hippocampal oscillations in freely moving wild-type rats, or how these alterations would affect performance on behavioral tasks. Here, we used an AAV virus to express ChR2 in the medial septum (MS) of wild-type rats, and optically stimulated septal neurons at 6 Hz and 30 Hz. We measured the corresponding effects of these stimulations on the oscillations of the MS and hippocampal subfields CA1 and CA3 in three different contexts: (1) With minimal movement while the rats sat in a confined chamber; (2) Explored a novel open field; and (3) Learned and performed a T-maze behavioral task. While control yellow light stimulation did not affect oscillations, 6-Hz blue light septal stimulations altered hippocampal theta oscillations in a manner that depended on the animal's mobility and speed. While the 30 Hz blue light septal stimulations only altered theta frequency in CA1 while the rat had limited mobility, it robustly increased the amplitude of hippocampal signals at 30 Hz in both regions in all three recording contexts. We found that animals were more likely to make a correct choice during Day 1 of T-maze training during both MS stimulation protocols than during control stimulation, and that improved performance was independent of theta frequency alterations
Lab-based X-ray micro-computed tomography coupled with machine-learning segmentation to investigate phosphoric acid leaching in high-temperature polymer electrolyte fuel cells
A machine-learning approach is used to segment 14 X-ray computed-tomography datasets acquired by lab-based scanning of laser-milled, high-temperature polymer electrolyte fuel cell samples mounted in a 3D-printed sample holder. Two modes of operation, one with constant current load and the other with current cycling, are explored and their impact on microstructural change is correlated with electrochemical performance degradation. Constant-current testing shows the overall quantity of phosphoric acid in the gas diffusion layers is effectively unchanged between 50 and 100 h of operation but that inter-electrode distribution becomes less uniform. Current-cycling tests reveal similar quantities of phosphoric acid but a different intra-electrode distribution. Membrane swelling appears more pronounced after current-cycling tests and in both cases, significant catalyst layer migration is observed. The present analysis provides a lab-based approach to monitoring microstructural degradation in high-temperature polymer electrolyte fuel cells and provides a more accessible and more statistically robust platform for assessing the impact of phosphoric acid mitigation strategies
The interaction between vaginal microbiota, cervical length and vaginal progesterone treatment for preterm birth risk
Background: Preterm birth is the primary cause of infant death worldwide. A short cervix in the second trimester of pregnancy is a risk factor for preterm birth. In specific patient cohorts, vaginal progesterone reduces this risk. Using 16S rRNA gene sequencing we undertook a prospective study in women at risk of preterm birth (n=161) to assess 1) the relationship between vaginal microbiota and cervical length in the second trimester and preterm birth-risk, and 2) the impact of vaginal progesterone on vaginal bacterial communities in women with a short cervix. Results: Lactobacillus iners dominance at 16 weeks gestation was significantly associated with both a short cervix <25mm (n=15, P<0.05), and preterm birth <34+0 weeks (n=18, 38P<0.01; 69% PPV). In contrast, L. crispatus dominance was highly predictive of term birth (n=127, 98% PPV). Cervical shortening and preterm birth were not associated with vaginal dysbiosis. A longitudinal characterization of vaginal microbiota (<18, 22, 28 and 34 weeks) was then undertaken in women receiving vaginal progesterone (400mg/OD, n=25) versus controls (n=42). Progesterone did not alter vaginal bacterial community structure nor reduce L. iners-associated preterm birth (<34 weeks). Conclusions: L. iners dominance of the vaginal microbiota at 16 weeks gestation is a risk factor for preterm birth, whereas L. crispatus dominance is protective against preterm birth. Vaginal progesterone does not appear to impact the pregnancy vaginal microbiota. Patients and clinicians who may be concerned about ‘infection risk’ associated with use of a vaginal pessary during high-risk pregnancy can be reassured
Transmission of equine influenza virus during an outbreak is characterized by frequent mixed infections and loose transmission bottlenecks.
The ability of influenza A viruses (IAVs) to cross species barriers and evade host immunity is a major public health concern. Studies on the phylodynamics of IAVs across different scales - from the individual to the population - are essential for devising effective measures to predict, prevent or contain influenza emergence. Understanding how IAVs spread and evolve during outbreaks is critical for the management of epidemics. Reconstructing the transmission network during a single outbreak by sampling viral genetic data in time and space can generate insights about these processes. Here, we obtained intra-host viral sequence data from horses infected with equine influenza virus (EIV) to reconstruct the spread of EIV during a large outbreak. To this end, we analyzed within-host viral populations from sequences covering 90% of the infected yards. By combining gene sequence analyses with epidemiological data, we inferred a plausible transmission network, in turn enabling the comparison of transmission patterns during the course of the outbreak and revealing important epidemiological features that were not apparent using either approach alone. The EIV populations displayed high levels of genetic diversity, and in many cases we observed distinct viral populations containing a dominant variant and a number of related minor variants that were transmitted between infectious horses. In addition, we found evidence of frequent mixed infections and loose transmission bottlenecks in these naturally occurring populations. These frequent mixed infections likely influence the size of epidemics
The vaginal microbiome during pregnancy and the postpartum period in a European population
The composition and structure of the pregnancy vaginal microbiome may influence susceptibility to adverse pregnancy outcomes. Studies on the pregnant vaginal microbiome have largely been limited to Northern American populations. Using MiSeq sequencing of 16S rRNA gene amplicons, we characterised the vaginal microbiota of a mixed British cohort of women (n = 42) who experienced uncomplicated term delivery and who were sampled longitudinally throughout pregnancy (8–12, 20–22, 28–30 and 34–36 weeks gestation) and 6 weeks postpartum. We show that vaginal microbiome composition dramatically changes postpartum to become less Lactobacillus spp. dominant with increased alpha-diversity irrespective of the community structure during pregnancy and independent of ethnicity. While the pregnancy vaginal microbiome was characteristically dominated by Lactobacillus spp. and low alpha-diversity, unlike Northern American populations, a significant number of pregnant women this British population had a L. jensenii-dominated microbiome characterised by low alpha-diversity. L. jensenii was predominantly observed in women of Asian and Caucasian ethnicity whereas L. gasseri was absent in samples from Black women. This study reveals new insights into biogeographical and ethnic effects upon the pregnancy and postpartum vaginal microbiome and has important implications for future studies exploring relationships between the vaginal microbiome, host health and pregnancy outcomes
Incidence of community-acquired lower respiratory tract infections and pneumonia among older adults in the United Kingdom: a population-based study.
Community-acquired lower respiratory tract infections (LRTI) and pneumonia (CAP) are common causes of morbidity and mortality among those aged ≥65 years; a growing population in many countries. Detailed incidence estimates for these infections among older adults in the United Kingdom (UK) are lacking. We used electronic general practice records from the Clinical Practice Research Data link, linked to Hospital Episode Statistics inpatient data, to estimate incidence of community-acquired LRTI and CAP among UK older adults between April 1997-March 2011, by age, sex, region and deprivation quintile. Levels of antibiotic prescribing were also assessed. LRTI incidence increased with fluctuations over time, was higher in men than women aged ≥70 and increased with age from 92.21 episodes/1000 person-years (65-69 years) to 187.91/1000 (85-89 years). CAP incidence increased more markedly with age, from 2.81 to 21.81 episodes/1000 person-years respectively, and was higher among men. For both infection groups, increases over time were attenuated after age-standardisation, indicating that these rises were largely due to population aging. Rates among those in the most deprived quintile were around 70% higher than the least deprived and were generally higher in the North of England. GP antibiotic prescribing rates were high for LRTI but lower for CAP (mostly due to immediate hospitalisation). This is the first study to provide long-term detailed incidence estimates of community-acquired LRTI and CAP in UK older individuals, taking person-time at risk into account. The summary incidence commonly presented for the ≥65 age group considerably underestimates LRTI/CAP rates, particularly among older individuals within this group. Our methodology and findings are likely to be highly relevant to health planners and researchers in other countries with aging populations
The host metabolite D-serine contributes to bacterial niche specificity through gene selection
Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host–pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity
- …