29,404 research outputs found
Exotic Forest Insects and Residential Property Values
This paper presents a case study of the economic damages to homeowners in a northern New Jersey community due to an exotic forest insect--the hemlock woolly adelgid. Hedonic property value methods are used to estimate the effect of hemlock health on property values. A statistically significant relationship between hemlock health and residential property values is established. Moreover, there are some signs of spillover impacts from hemlock decline, as negative effects are realized on the parcels where the declining hemlock stands are located as well as on neighboring properties. These results give some indication of the benefits of potential control programs and strategies and also show support for community- or neighborhood-based programs in residential settings.invasive species, economic impacts, hedonic property values, general spatial model, Land Economics/Use,
Micro-Engineered Devices for Motion Energy Harvesting
Published versio
Morphing of Geometric Composites via Residual Swelling
Understanding and controlling the shape of thin, soft objects has been the
focus of significant research efforts among physicists, biologists, and
engineers in the last decade. These studies aim to utilize advanced materials
in novel, adaptive ways such as fabricating smart actuators or mimicking living
tissues. Here, we present the controlled growth--like morphing of 2D sheets
into 3D shapes by preparing geometric composite structures that deform by
residual swelling. The morphing of these geometric composites is dictated by
both swelling and geometry, with diffusion controlling the swelling-induced
actuation, and geometric confinement dictating the structure's deformed shape.
Building on a simple mechanical analog, we present an analytical model that
quantitatively describes how the Gaussian and mean curvatures of a thin disk
are affected by the interplay among geometry, mechanics, and swelling. This
model is in excellent agreement with our experiments and numerics. We show that
the dynamics of residual swelling is dictated by a competition between two
characteristic diffusive length scales governed by geometry. Our results
provide the first 2D analog of Timoshenko's classical formula for the thermal
bending of bimetallic beams - our generalization explains how the Gaussian
curvature of a 2D geometric composite is affected by geometry and elasticity.
The understanding conferred by these results suggests that the controlled
shaping of geometric composites may provide a simple complement to traditional
manufacturing techniques
Applicability of selected wheat remote sensing technology to corn and soybeans
There are no author-identified significant results in this report
Total focussing method for volumetric imaging in immersion non destructive evaluation
This paper describes the use of a 550 (25x22) element 2MHz 2D piezoelectric composite array in immersion mode to image an aluminum test block containing a collection of artificial defects. The defects included a 1mm diameter side-drilled hole, a collection of 1mm slot defects with varying degrees of skew to the normal and a flat bottomed hole. The data collection was carried out using the full matrix capture; a scanning procedure was developed to allow the operation of the large element count array through a conventional 64-channel phased array controller. A 3D TFM algorithm capable of imaging in a dual media environment was implemented in MATLAB for the offline processing the raw scan data. This algorithm facilitates the creation of 3D images of defects while accounting for refraction effects at material boundaries. In each of the test samples interrogated the defects, and their spatial position, are readily identified using TFM. Defect directional information has been characterized using VTFM for defect exhibiting angles up to and including 45o of skew
Recommended from our members
Capacity of English NHS hospitals to monitor quality in infection prevention and control using a new European framework: a multilevel qualitative analysis
Objective:(1) To assess the extent to which current English national regulations/policies/guidelines and local hospital practices align with indicators suggested by a European review of effective strategies for infection prevention and control (IPC); (2) to examine the capacity of local hospitals to report on the indicators and current use of data to inform IPC management and practice.
Design
A national and local-level analysis of the 27 indicators was conducted. At the national level, documentary review of regulations/policies/guidelines was conducted. At the local level data collection comprised: (a) review of documentary sources from 14 hospitals, to determine the capacity to report performance against these indicators; (b) qualitative interviews with 3 senior managers from 5 hospitals and direct observation of hospital wards to find out if these indicators are used to improve IPC management and practice.
Setting
2 acute English National Health Service (NHS) trusts and 1 NHS foundation trust (14 hospitals).
Participants
3 senior managers from 5 hospitals for qualitative interviews.
Primary and secondary outcome measures
As primary outcome measures, a ‘Red-Amber-Green’ (RAG) rating was developed reflecting how well the indicators were included in national documents or their availability at the local organisational level. The current use of the indicators to inform IPC management and practice was also assessed. The main secondary outcome measure is any inconsistency between national and local RAG rating results.
Results
National regulations/policies/guidelines largely cover the suggested European indicators. The ability of individual hospitals to report some of the indicators at ward level varies across staff groups, which may mask required improvements. A reactive use of staffing-related indicators was observed rather than the suggested prospective strategic approach for IPC management.
Conclusions
For effective patient safety and infection prevention in English hospitals, routine and proactive approaches need to be developed. Our approach to evaluation can be extended to other country settings
Gravitational wave recoil in Robinson-Trautman spacetimes
We consider the gravitational recoil due to non-reflection-symmetric
gravitational wave emission in the context of axisymmetric Robinson-Trautman
spacetimes. We show that regular initial data evolve generically into a final
configuration corresponding to a Schwarzschild black-hole moving with constant
speed. For the case of (reflection-)symmetric initial configurations, the mass
of the remnant black-hole and the total energy radiated away are completely
determined by the initial data, allowing us to obtain analytical expressions
for some recent numerical results that have been appeared in the literature.
Moreover, by using the Galerkin spectral method to analyze the non-linear
regime of the Robinson-Trautman equations, we show that the recoil velocity can
be estimated with good accuracy from some asymmetry measures (namely the first
odd moments) of the initial data. The extension for the non-axisymmetric case
and the implications of our results for realistic situations involving head-on
collision of two black holes are also discussed.Comment: 9 pages, 6 figures, final version to appear in PR
Recommended from our members
The circulatory impact of dust from dust profile assimilation
We present results from a reanalysis of temperatures, dust columns and dust vertical profiles focussing on the assimilation, distribution and transport of dust in the martian atmosphere. The assimilation of dust vertical information in particular is a valuable technique which has been shown to be of vital importance to a successful assimilation of the martian atmosphere, with the vertical representation of the dust distribution having a critical effect on assimilation results generally.
Atmospheric dust is a key driver of the martian circulation. Dust-induced heating and cooling is a potential feedback mechanism for dust lifting, for example, and can modify the circulation to either enhance or suppress dust storm activity. Accurately representing its complex spatial and temporal distribution is therefore crucial for understanding Mars’ atmospheric dynamics and transport
Performance of Oil Pumping Rings: An Analytical and Experimental Study
A steady-state design computer program was developed to predict the performance of pumping rings as functions of geometry, applied loading, speed, ring modulus, and fluid viscosity. Additional analyses were developed to predict transient behavior of the ring and the effects of temperature rises occurring in the hydrodynamic film between the ring and shaft. The analysis was initially compared with previous experimental data and then used to design additional rings for further testing. Tests were performed with Rulon, carbon-graphite, and babbit rings. The design analysis was used to size all of the rings and to select the ranges of clearances, thickness, and loading. Although full quantitative agreement was lacking, relative agreement existed in that rings that were predicted to perform well theoretically, generally performed well experimentally. Some causes for discrepanices between theory and experiment are believed to be due to starvation, leakage past the secondary seal at high pressures, and uncertainties in the small clearances and local inlet temperatures to the pumping ring. A separate preliminary analysis was performed for a pumping Leningrader seal. This anlaysis can be used to predict the film thickness and flow rate thr ough the seal as a function of pressure, speed, loading, and geometry
Quantifying Spatiotemporal Chaos in Rayleigh-B\'enard Convection
Using large-scale parallel numerical simulations we explore spatiotemporal
chaos in Rayleigh-B\'enard convection in a cylindrical domain with
experimentally relevant boundary conditions. We use the variation of the
spectrum of Lyapunov exponents and the leading order Lyapunov vector with
system parameters to quantify states of high-dimensional chaos in fluid
convection. We explore the relationship between the time dynamics of the
spectrum of Lyapunov exponents and the pattern dynamics. For chaotic dynamics
we find that all of the Lyapunov exponents are positively correlated with the
leading order Lyapunov exponent and we quantify the details of their response
to the dynamics of defects. The leading order Lyapunov vector is used to
identify topological features of the fluid patterns that contribute
significantly to the chaotic dynamics. Our results show a transition from
boundary dominated dynamics to bulk dominated dynamics as the system size is
increased. The spectrum of Lyapunov exponents is used to compute the variation
of the fractal dimension with system parameters to quantify how the underlying
high-dimensional strange attractor accommodates a range of different chaotic
dynamics
- …