1,440 research outputs found

    Rumen function and digestion parameters associated with differences between sheep in methane emissions when fed chaffed lucerne hay

    Get PDF
    An indoor experiment involving 10 rumen-cannulated Romney sheep was conducted in May and June 1998 at AgResearch Grasslands, Palmerston North, New Zealand, under restricted feeding conditions. in order to test the hypothesis that animal factors, in particular rumen fractional outflow rate (FOR) and rumen volume, have an influence on the between-sheep variation in methane (CH4) emission. Sheep were fed 2-hourly on chaffed lucerne hay. Following an acclimatization period of 21 days, the experiment lasted 16 days. Energy and nitrogen (N) balances were measured on days 1-6. Cr-EDTA marker was continuously infused into the rumen from day 9 to 16, and rumen contents emptied and sampled on days 13 and 16. Particulate and fluid FOR were estimated using feed lignin and Cr-EDTA, respectively. Daily CH, production was measured by the sulphur hexafluoride tracer technique on days 2, 5, 6, 12 and 15 of the experiment. CH4 production (g/day) was positively correlated with the pool size of organic matter (OM) in the rumen (OM pool, g) (r = 0.84, P = 0.002), OM intake (OMI, g/day) (r = 0.67, P = 0.04), and the rumen fill (g. wet digesta) (r = 0.76, P = 0.01). Multiple regression analysis showed that CH4 production was best predicted (R-2 = 0.88) as a function of OM pool and the molar % of butyrate; however, OM pool alone accounted for a large proportion (R-2 = 0.71) of the variation in CH4 production. CH4 yield (% gross energy intake, % GEI) was negatively correlated with the particulate FOR (%/h) ( r= -0.75, P = 0.01) and buffering capacity of rumen fluid (mmol HCl) (r = -0.72, P = 0.02) but positively correlated with the digestibility of cellulose (r = 0.66, P = 0.04). Multiple regression analysis showed that CH, yield was best predicted as a function of particulate FOR, OMI (g/kg liveweight(0.75)) and the molar % of butyrate (R-2 = 0.88). Particulate FOR alone explained a large proportion (R-2 = 0.57) of the variation in CH4 Yield. Particulate FOR was negatively correlated with rumen fill (r = -0.69, P = 0.03) and digestibility of cellulose (r = -0.65, P = 0.04). These results suggest that sheep with lower rumen particulate FOR (i.e. longer rumen retention times) had larger rumen fills and higher fibre digestibilities and CH4 yields. If rumen particulate FOR is to be used as a tool for CH4 mitigation, the repeatability of its relationship to CH4 emission must be assessed, preferably under grazing conditions

    Persistence of differences between sheep in methane emission under generous grazing conditions

    Get PDF
    Four low and four high methane (CH4) emitters were selected from a flock of 20 Romney sheep on the basis of CH4 production rates per unit of intake, measured at grazing using the sulphur hexafluoride (SF,) tracer technique. Methane emissions from these sheep were monitored at grazing for four periods (P): October, November, January and February 1999/2000. All measurements were carried out on perennial ryegrass/white clover pasture under generous herbage allowance, and the sheep were maintained on similar pastures during non-measurement periods. The tracer technique was used for all the CH4 measurements and feed DM intake was calculated from total faecal collection and estimated DM digestibility. Data for liveweight (LW), gross energy intake (GEI) and CH4 emission were analysed using split-plot analysis of variance. In addition, a between-period rank order correlation analysis was carried out for CH4 emission data. Low CH4 emitters were heavier (P < 0.05) than the high emitters in all the periods, but they did not differ (P < 0.05) in their gross energy intakes (GEL MJ/kg LW0.75). Low and high CH4 emitters consistently maintained their initial rankings in CH4 yield (% GEI) throughout the subsequent periods and the correlation analysis of rank order for CH4 yield showed strong between-period correlation coefficients, although this was weaker in the last period. It is suggested that feeding conditions that maximize feed intake (e.g. generous allowance of good quality pasture under grazing) favour the expression and persistence of between-sheep differences in CH4 yield

    Responses to supplementation by dairy cows given low pasture allowances in different seasons 2. Milk production

    Get PDF
    Two factorial experiments were designed to determine the effects of stage of lactation, and season of the year, on cow responses to supplementary feeding. These experiments were conducted over consecutive years with 128 high genetic merit multiparous Holstein-Friesian cows in early, mid and late lactation in spring, summer, autumn and winter. At each stage of lactation, and in each season of the year, cows were offered a restricted pasture allowance (25 to 35 kg dry matter (DM) per cow per day), either unsupplemented (control) or with supplement at 50 MJ metabolizable energy (ME) per cow per day in experiment 1 and 80 MJ ME per cow per day in experiment 2. The two supplements given in both years were rolled maize grain (MG) and a mixture of foods formulated to nutritionally balance the diet (BR). In experiment 2, another treatment, of a generous pasture allowance (60 to 75 kg DM per cow per day) (AP), was imposed on an additional group of early lactation cows during each season. Direct milk solids (MS) (milk fat plus milk protein) responses in experiment 1 to MG were 169, 279, 195 and 251 g MS per cow per day in spring, summer, autumn and winter, respectively, while those to BR were 107, 250, 192, 289 g MS per cow per day. In experiment 2, however, milk solids responses to both supplements during spring were slightly below the control treatment, with values similar to those in experiment 1 in summer and autumn for cows on the BR but not the MG supplement. Milk solids responses to supplementary foods were largest during seasons of the year when the quantity and quality of pasture on offer resulted in the lowest milk solids yield from unsupplemented cows. When carry-over effects of feeding MG and BR on milk solids production were detected, they were only about half the magnitude of the direct effects. Serum urea concentrations were higher in control cows than those offered MG with a similar effect for BR in all but summer in experiment 1, while serum glucose concentrations were highest in winter and lowest in summer. The most important factor influencing milk solids responses was the relative food deficit (RFD) represented by the decline in milk solids yield of the respective control groups after,changing from a generous pasture allowance to restricted allowance when the feeding treatments were imposed. Total milk solids responses (direct and carry-over) to supplements were greatest when severe food restrictions, relative to the cows' current food demand, resulted in large reductions in milk solids yield of the control groups. The RFD was the best predictor of milk solids response to supplementary foods. Therefore, it is likely that cows are most responsive to supplementary foods during or immediately after the imposition of a severe food restriction

    Responses to supplementation by dairy cows given low pasture allowances in different seasons 1. Pasture intake and substitution

    Get PDF
    Two factorial experiments were designed to determine the effects of stage of lactation, and season of the year, on cow responses to supplementary feeding. These experiments were conducted over consecutive years with 128 high genetic merit multiparous Holstein-Friesian cows in early, mid and late lactation in spring, summer, autumn and winter. At each stage of lactation, and in each season of the year, cows were offered a restricted pasture allowance (25 to 35 kg dry matter (DM) per cow per day), either unsupplemented (control) or supplemented with 50 MJ metabolizable energy (ME) per cow per day in experiment 1 and 80 MJ ME per cow per day in experiment 2. Two different supplements were offered, namely, rolled maize grain (MG) and a mixture of foods (BR) formulated to nutritionally balance the diet. In experiment 2, a fourth treatment consisting solely of a generous pasture allowance (60 to 75 kg DM per cow per day, AP) was introduced. Offering MG and BR increased DM intake (DMI). At the restricted pasture allowance, increasing total ME allowance (MEA) by offering supplementary foods increased ME intake (MEI) by 0.68 (s.e. 0.047) MJ per extra MJ ME offered. This highly significant (P < 0.001) linear relationship was consistent across seasons, and did not diminish at higher MEA. In experiment 2, cows in early lactation had lower substitution rates than mid and late lactation cows irrespective of season. Substitution rate was higher when higher pasture allowance or quality of pasture on offer enabled the unsupplemented cows to achieve higher DMI from pasture than at other times of the year. These results suggest that one of the key factors determining the intake response to supplementary foods is pasture allowance. Within spring calving dairying systems, the largest increases in total DMI per kg of supplement offered is likely when offering supplements to early lactation cows grazing restricted allowances of high quality pasture

    Methane emission by alpaca and sheep fed on lucerne hay or grazed on pastures of perennial ryegrass/white clover or birdsfoot trefoil

    Get PDF
    Based on the knowledge that alpaca (Lama pacos) have a lower fractional outflow rate of feed particles (particulate FOR) from their forestomach than sheep (San Martin 1987), the current study measured methane (CH4) production and other digestion parameters in these species in three successive experiments (1, 2 and 3): Experiment 1, lucerne hay fed indoors; Experiment 2, grazed on perennial ryegrass/white clover pasture (PRG/WC); and Experiment 3, grazed on birdsfoot trefoil (Lotus corniculatits) pasture (Lotus). Six male alpaca and six castrated Romney sheep were simultaneously and successively fed on the forages either ad libitium or at generous herbage allowances (grazing). CH4 production (g/day) (using the sulphur hexafluoride tracer technique), voluntary feed intake (VFI), diet quality, and protozoa counts and volatile fatty acid concentrations in samples of forestomach contents were determined. In addition, feed digestibility, energy and nitrogen (N) balances and microbial N supply from the forestomach (using purine derivatives excretion) were measured in Experiment 1. Diets selected by alpaca were of lower quality than those selected by sheep, and the voluntary gross energy intakes (GEI, MJ) per kg of liveweight(0.75) were consistently lower (P0.05) in their CH4 yields (% GEI) when fed on lucerne hay (5.1 v. 4.7), but alpaca had a higher CH4 yield when fed on PRG/WC (9.4 v. 7.5, P0.05) in diet N partition or microbial N yield, but alpaca had higher (P<0.05) neutral detergent fibre digestibility (0.478 v. 0.461) and lower (P<0.01) urinary energy losses (5.2 v. 5.8 % GEI) than sheep. It is suggested that differences between these species in forestomach particulate FOR might have been the underlying physiological mechanism responsible for the differences in CH4 yield, although the between-species differences in VFI and diet quality also had a major effect on it

    INVESTIGATING DRILL CONSTRAINT KINEMATICS IN MALE BASEBALL PITCHERS USING MARKERLESS MOTION CAPTURE

    Get PDF
    This study investigated the kinematic differences that pitching constraint drills elicit compared to a baseball pitch. 18 male baseball pitchers with average height (183.7 ± 5.2cm), weight (87.4 ± 9.6kg), and skill level (Professional (4), Collegiate (5), High School (9)) were included. Video was recorded using a single camera from the open side. Each pitcher threw 3 maximum effort pitches from a mound. Next, 3 maximum effort throws were recorded for 8 different throwing drills: medicine ball hook’em drill, pivot pickoff drill, foot-up rocker drill, walk-in drill, towel drill, janitor drill, drop-step drill, and long toss. Videos were processed using pitchAITM, a markerless motion capture solution. The medicine ball hook’em drill was the most different to a pitch, and the towel drill was the most similar. This work demonstrates the first collective approach to studying the biomechanics of frequently used baseball pitching constraint drills

    DETERMINING RELATIONSHIPS BETWEEN KINEMATIC SEQUENCING AND BASEBALL PITCH VELOCITY USING MARKERLESS MOTION CAPTURE

    Get PDF
    The purpose of this study was to determine how the timings and magnitudes of peak pelvis rotational velocity, peak trunk rotational velocity, peak elbow extension velocity, and peak shoulder internal rotation velocity affect pitch velocity. Eighty pitchers (187.2 ± 8.2cm, 89.3 ± 13.0kg, 20.1 ± 3.3yrs) had a minimum of 3 fastballs recorded and video was processed using pitchAITM. Average pitch velocity was 38.1 ± 2.5 m/s. A multilinear regression generated a significant prediction for pitch velocity (R2 = 0.368 and p \u3c 0.01). Pitcher weight (β = 0.535, p \u3c 0.001), peak pelvis rotational velocity timing (β = -0.157, p = 0.001), peak elbow extension timing (β = 0.122, p = 0.006), and peak shoulder internal rotation timing (β = -0.113, p = 0.018), were significant contributors to the multilinear model. In conclusion, player weight and their kinematic sequence metrics from pitchAITM can be significant predictors of pitch velocity

    Frequent Cross-Species Transmission of Parvoviruses among Diverse Carnivore Hosts

    Get PDF
    Although parvoviruses are commonly described in domestic carnivores, little is known about their biodiversity in nondomestic species. A phylogenetic analysis of VP2 gene sequences from puma, coyote, gray wolf, bobcat, raccoon, and striped skunk revealed two major groups related to either feline panleukopenia virus (“FPV-like”) or canine parvovirus (“CPV-like”). Crossspecies transmission was commonplace, with multiple introductions into each host species but, with the exception of raccoons, relatively little evidence for onward transmission in nondomestic species

    Competition-based screening helps to secure the evolutionary stability of a defensive microbiome

    Get PDF
    Background: The cuticular microbiomes of Acromyrmex leaf-cutting ants pose a conundrum in microbiome biology because they are freely colonisable, and yet the prevalence of the vertically transmitted bacteria Pseudonocardia, which contributes to the control of Escovopsis fungus garden disease, is never compromised by the secondary acquisition of other bacterial strains. Game theory suggests that competition-based screening can allow the selective recruitment of antibiotic-producing bacteria from the environment, by providing abundant resources to foment interference competition between bacterial species and by using Pseudonocardia to bias the outcome of competition in favour of antibiotic producers. Results: Here, we use RNA-stable isotope probing (RNA-SIP) to confirm that Acromyrmex ants can maintain a range of microbial symbionts on their cuticle by supplying public resources. We then used RNA sequencing, bioassays, and competition experiments to show that vertically transmitted Pseudonocardia strains produce antibacterials that differentially reduce the growth rates of other microbes, ultimately biassing the bacterial competition to allow the selective establishment of secondary antibiotic-producing strains while excluding non-antibiotic-producing strains that would parasitise the symbiosis. Conclusions: Our findings are consistent with the hypothesis that competition-based screening is a plausible mechanism for maintaining the integrity of the co-adapted mutualism between the leaf-cutting ant farming symbiosis and its defensive microbiome. Our results have broader implications for explaining the stability of other complex symbioses involving horizontal acquisition
    corecore