103 research outputs found

    Genome Sequence of the Alkaline-Tolerant Cellulomonas sp. Strain FA1

    Get PDF
    We present the genome of the cellulose-degrading Cellulomonas sp. strain FA1 isolated from an actively serpentinizing highly alkaline spring. Knowledge of this genome will enable studies into the molecular basis of plant material degradation in alkaline environments and inform the development of lignocellulose bioprocessing procedures for biofuel production

    Estimation of the Cellular Antioxidant Response to Chromium Action Using ESR Method

    Get PDF
    In the present study, the antioxidant capacity of chromium-treated L-41 (human epithelial-like cells) was investigated by the ESR spin-trapping technique. The crude cell extracts of the cells grown in the presence of 2 µM (nontoxic) and 20 µM (toxic) chromium (VI) concentrations were tested in the model Fenton system with and without catalase-inhibitor sodium azide. The presented approach using the ESR technique along with inhibitors lets us discern cell extract defense capacity connected with the enzymatic activity in viable cells and the catabolic activity in dying cells

    Lipid analysis of CO2-rich subsurface aquifers suggests an autotrophy-based deep biosphere with lysolipids enriched in CPR bacteria.

    Get PDF
    Sediment-hosted CO2-rich aquifers deep below the Colorado Plateau (USA) contain a remarkable diversity of uncultivated microorganisms, including Candidate Phyla Radiation (CPR) bacteria that are putative symbionts unable to synthesize membrane lipids. The origin of organic carbon in these ecosystems is unknown and the source of CPR membrane lipids remains elusive. We collected cells from deep groundwater brought to the surface by eruptions of Crystal Geyser, sequenced the community, and analyzed the whole community lipidome over time. Characteristic stable carbon isotopic compositions of microbial lipids suggest that bacterial and archaeal CO2 fixation ongoing in the deep subsurface provides organic carbon for the complex communities that reside there. Coupled lipidomic-metagenomic analysis indicates that CPR bacteria lack complete lipid biosynthesis pathways but still possess regular lipid membranes. These lipids may therefore originate from other community members, which also adapt to high in situ pressure by increasing fatty acid unsaturation. An unusually high abundance of lysolipids attributed to CPR bacteria may represent an adaptation to membrane curvature stress induced by their small cell sizes. Our findings provide new insights into the carbon cycle in the deep subsurface and suggest the redistribution of lipids into putative symbionts within this community

    Salt Stress in Desulfovibrio Vulgaris Hildenborough: An Integrated Genomics Approach

    Get PDF
    I-017Recent interest in the ability of Desulfovibrio vulgaris Hildenborough to reduce, and therefore contain, toxic and radioactive metal waste, has made all factors that affect its physiology of great interest. Increased salinity constitutes an important and frequent fluctuation faced by D. vulgaris in its natural habitat. In liquid culture, exposure to excess salt resulted in a striking cell elongation in D. vulgaris. Using data from transcriptomics, proteomics, metabolite assays, phospholipid fatty acid profiling, and electron microscopy, we undertook a systems approach to explore the effects of excess NaCl on D. vulgaris. This study demonstrates that import of osmoprotectants such as glycine betaine and ectoine constitute the primary mechanism used by D. vulgaris to counter hyper-ionic stress. Several efflux systems were also highly up-regulated, as was the ATP synthesis pathway. Increase in both RNA and DNA helicases suggested that salt stress had affected the stability of nucleic acid base pairing. An overall increase in branched fatty acids indicated changes in cell wall fluidity. An immediate response to salt stress included upregulation of chemotaxis genes though flagellar biosynthesis was down-regulated. Other down-regulated systems included lactate uptake permeases and ABC transport systems. The extensive NaCl stress analysis was compared with microarray data from KCl stress and unlike many other bacteria, D. vulgaris responded similarly to the two stresses. Integration of data from multiple methods has allowed us to present a conceptual model for salt stress response in D. vulgaris that can be compared to other microorganisms.This work was part of the Virtual Institute for Microbial Stress and Survival supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics Program:GTL through contract DE-AC03- 76SF00099 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy

    A Calorimetric Characterization of Cr(VI)-Reducing Arthrobacter oxydans

    Get PDF
    This is the first of a series of calorimetric studies designed to characterize and understand survival mechanisms of metal-reducing bacteria isolated from metal-polluted environments. In this paper we introduce a new concept of thermal spectrum of the endothermic melting of complex biological systems (e.g., proteins, nucleic acids, ribosomes, membrane structures) in intact cells. All thermal spectra measured are thermograms that describe the temperature dependence of heat capacity change of the complex systems of biologically active substances in bacterial cells. This new concept of thermal spectrum was applied to investigate spectral features from intact cells of Cr(VI)-reducer Arthrobacter oxydans at different points of their growth conditions and stages. Over the temperature range of 40–105°C, we observed that spectral changes are particularly significant in the 40–90°C interval. This may correspond to the orderly changes in subcellular structural elements: proteins, ribosomes and RNA, membranes, and various structural elements of the cell wall during different points of the growth cycle and growth conditions. Spectral changes in the 90–105°C region are less pronounced, implicating that the structural composition of DNA-Protein (DNP) complexes may change little
    • …
    corecore