9,494 research outputs found
Helical states of nonlocally interacting molecules and their linear stability: geometric approach
The equations for strands of rigid charge configurations interacting
nonlocally are formulated on the special Euclidean group, SE(3), which
naturally generates helical conformations. Helical stationary shapes are found
by minimizing the energy for rigid charge configurations positioned along an
infinitely long molecule with charges that are off-axis. The classical energy
landscape for such a molecule is complex with a large number of energy minima,
even when limited to helical shapes. The question of linear stability and
selection of stationary shapes is studied using an SE(3) method that naturally
accounts for the helical geometry. We investigate the linear stability of a
general helical polymer that possesses torque-inducing non-local
self-interactions and find the exact dispersion relation for the stability of
the helical shapes with an arbitrary interaction potential. We explicitly
determine the linearization operators and compute the numerical stability for
the particular example of a linear polymer comprising a flexible rod with a
repeated configuration of two equal and opposite off-axis charges, thereby
showing that even in this simple case the non-local terms can induce
instability that leads to the rod assuming helical shapes.Comment: 34 pages, 9 figure
Bioethanol from Germinated Grains.
The most well-known way to produce bioethanol is by the enzymatic hydrolysis and fermentation of starch. In a new project “BioConcens” (2007) sponsored by DARCOF (DAnish Research Center for Organic Food and farming) one aim is to develop a combined ethanol and biogas production for use in organic farming using starch containing biomass. Natural enzymes from cereals will be used for hydrolysis of starch to glucose in accordance with technology in brewing technology. Commercial enzymes are often produced from gene-modified organisms and will therefore not be used in the suggested organic context or process.
A preliminary study was performed in which grains of wheat, rye, and barley were germinated using traditional methods applied in malting for beer production. During malting the amylase enzymes present in the grain are activated (autoamylolytic effect). Three steps were applied in the malting process; steeping, germination, and drying of the grains. After malting the grains were milled and mixed with water to 13% DM, cooked at 57.5C for 2 hours (to activate the enzymes), and cooled to 30C before adding Bakers Yeast.
The results of this study indicate that efficient hydrolysis of starch can be achieved by activation of autoamylolytic enzymes in cereal grains after a malting process. The ethanol yields obtained in the autoamylolytic hydrolysis was comparable (or slightly higher) to that of reference experiments using commercial enzymes (amylases). The highest ethanol yield was obtained with wheat (0.34 g/g DM grain), followed by barley (0.31 g/g DM grain), and rye (0.29 g/g DM grain)
Induced activation in accelerator components
The residual activity induced in particle accelerators is a serious issue from the point of view of radiation safety as the long-lived radionuclides produced by fast or moderated neutrons and impact protons cause problems of radiation exposure for staff involved in the maintenance work and when decommissioning the facility. This paper presents activation studies of the magnets and collimators in the High Energy Beam Transport line of the European Spallation Source due to the backscattered neutrons from the target and also due to the direct proton interactions and their secondaries. An estimate of the radionuclide inventory and induced activation are predicted using the GEANT4 code
Ion pairing in model electrolytes: A study via three particle correlation functions
A novel integral equations approach is applied for studying ion pairing in
the restricted primitive model (RPM) electrolyte, i. e., the three point
extension (TPE) to the Ornstein-Zernike integral equations. In the TPE
approach, the three-particle correlation functions are obtained. The TPE results are compared to molecular
dynamics (MD) simulations and other theories. Good agreement between TPE and MD
is observed for a wide range of parameters, particularly where standard
integral equations theories fail, i. e., low salt concentration and high ionic
valence. Our results support the formation of ion pairs and aligned ion
complexes.Comment: 43 pages (including 18 EPS figs) - RevTeX 4 - J. Chem. Phys. (in
press
Current-induced phase transition in ballistic Ni nanocontacts
Local phase transition from ferromagnetic to paramagnetic state in the region
of the ballistic Ni nanocontacts (NCs) has been experimentally observed. We
found that contact size reduction leads to an increase in the bias voltage at
which the local phase transition occurs. Presented theoretical interpretation
of this phenomena takes into the account the specificity of the local heating
of the ballistic NC and describes the electron's energy relaxation dependences
on the applied voltage. The experimental data are in good qualitative and
quantitative agreement with the theory proposed.Comment: 8 pages, 2 figure
Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide
The optical coupling of guided modes in a GaP waveguide to nitrogen-vacancy
(NV) centers in diamond is demonstrated. The electric field penetration into
diamond and the loss of the guided mode are measured. The results indicate that
the GaP-diamond system could be useful for realizing coupled microcavity-NV
devices for quantum information processing in diamond.Comment: 4 pages 4 figure
Geometric analysis of noisy perturbations to nonholonomic constraints
We propose two types of stochastic extensions of nonholonomic constraints for
mechanical systems. Our approach relies on a stochastic extension of the
Lagrange-d'Alembert framework. We consider in details the case of invariant
nonholonomic systems on the group of rotations and on the special Euclidean
group. Based on this, we then develop two types of stochastic deformations of
the Suslov problem and study the possibility of extending to the stochastic
case the preservation of some of its integrals of motion such as the Kharlamova
or Clebsch-Tisserand integrals
Inertial Range Scaling, Karman-Howarth Theorem and Intermittency for Forced and Decaying Lagrangian Averaged MHD in 2D
We present an extension of the Karman-Howarth theorem to the Lagrangian
averaged magnetohydrodynamic (LAMHD-alpha) equations. The scaling laws
resulting as a corollary of this theorem are studied in numerical simulations,
as well as the scaling of the longitudinal structure function exponents
indicative of intermittency. Numerical simulations for a magnetic Prandtl
number equal to unity are presented both for freely decaying and for forced two
dimensional MHD turbulence, solving directly the MHD equations, and employing
the LAMHD-alpha equations at 1/2 and 1/4 resolution. Linear scaling of the
third-order structure function with length is observed. The LAMHD-alpha
equations also capture the anomalous scaling of the longitudinal structure
function exponents up to order 8.Comment: 34 pages, 7 figures author institution addresses added magnetic
Prandtl number stated clearl
Reconstruction of protein structures from a vectorial representation
We show that the contact map of the native structure of globular proteins can
be reconstructed starting from the sole knowledge of the contact map's
principal eigenvector, and present an exact algorithm for this purpose. Our
algorithm yields a unique contact map for all 221 globular structures of
PDBselect25 of length . We also show that the reconstructed contact
maps allow in turn for the accurate reconstruction of the three-dimensional
structure. These results indicate that the reduced vectorial representation
provided by the principal eigenvector of the contact map is equivalent to the
protein structure itself. This representation is expected to provide a useful
tool in bioinformatics algorithms for protein structure comparison and
alignment, as well as a promising intermediate step towards protein structure
prediction.Comment: 4 pages, 1 figur
A ferrofluid based neural network: design of an analogue associative memory
We analyse an associative memory based on a ferrofluid, consisting of a
system of magnetic nano-particles suspended in a carrier fluid of variable
viscosity subject to patterns of magnetic fields from an array of input and
output magnetic pads. The association relies on forming patterns in the
ferrofluid during a trainingdphase, in which the magnetic dipoles are free to
move and rotate to minimize the total energy of the system. Once equilibrated
in energy for a given input-output magnetic field pattern-pair the particles
are fully or partially immobilized by cooling the carrier liquid. Thus produced
particle distributions control the memory states, which are read out
magnetically using spin-valve sensors incorporated in the output pads. The
actual memory consists of spin distributions that is dynamic in nature,
realized only in response to the input patterns that the system has been
trained for. Two training algorithms for storing multiple patterns are
investigated. Using Monte Carlo simulations of the physical system we
demonstrate that the device is capable of storing and recalling two sets of
images, each with an accuracy approaching 100%.Comment: submitted to Neural Network
- …