15,123 research outputs found
Acoustic radiation patterns for a source in a hard-walled unflanged circular duct
Acoustic radiation patterns are measured over a 320 deg arc for a point source in a finite length, hard walled, unflanged circular duct. The measured results are compared with computed results which are based on the Wiener-Hopf solution for radiation from a semi-infinite unflanged duct. Measurements and computations are presented for frequencies slightly below and slightly above each of the first four higher order radial mode cutoff frequencies. It is found that the computed and measured patterns show better agreement below the mode cut-off frequencies than above and that the agreement is better at lower frequencies that at higher frequencies. The computed radiation patterns do not show fine lobes which are caused by diffraction from the back end of the duct
Variational Principles for Lagrangian Averaged Fluid Dynamics
The Lagrangian average (LA) of the ideal fluid equations preserves their
transport structure. This transport structure is responsible for the Kelvin
circulation theorem of the LA flow and, hence, for its convection of potential
vorticity and its conservation of helicity.
Lagrangian averaging also preserves the Euler-Poincar\'e (EP) variational
framework that implies the LA fluid equations. This is expressed in the
Lagrangian-averaged Euler-Poincar\'e (LAEP) theorem proven here and illustrated
for the Lagrangian average Euler (LAE) equations.Comment: 23 pages, 3 figure
Two-component {CH} system: Inverse Scattering, Peakons and Geometry
An inverse scattering transform method corresponding to a Riemann-Hilbert
problem is formulated for CH2, the two-component generalization of the
Camassa-Holm (CH) equation. As an illustration of the method, the multi -
soliton solutions corresponding to the reflectionless potentials are
constructed in terms of the scattering data for CH2.Comment: 22 pages, 3 figures, draft, please send comment
Resonant Interactions in Rotating Homogeneous Three-dimensional Turbulence
Direct numerical simulations of three-dimensional (3D) homogeneous turbulence
under rapid rigid rotation are conducted to examine the predictions of resonant
wave theory for both small Rossby number and large Reynolds number. The
simulation results reveal that there is a clear inverse energy cascade to the
large scales, as predicted by 2D Navier-Stokes equations for resonant
interactions of slow modes. As the rotation rate increases, the
vertically-averaged horizontal velocity field from 3D Navier-Stokes converges
to the velocity field from 2D Navier-Stokes, as measured by the energy in their
difference field. Likewise, the vertically-averaged vertical velocity from 3D
Navier-Stokes converges to a solution of the 2D passive scalar equation. The
energy flux directly into small wave numbers in the plane from
non-resonant interactions decreases, while fast-mode energy concentrates closer
to that plane. The simulations are consistent with an increasingly dominant
role of resonant triads for more rapid rotation
Forward velocity effects on fan noise and the influence of inlet aeroacoustic design as measured in the NASA Ames 40 x 80 foot wind tunnel
The inlet radiated noise of a turbofan engine was studied. The principal research objectives were to characterize or suppress such noise with particular regard to its tonal characteristics. The major portion of this research was conducted by using ground-based static testing without simulation of aircraft forward speed or aircraft installation-related aeroacoustic effects
The Finnish Society for the Study of Religion 50 Years: Development and Challenges
In the first issue of Temenos in 1965 Professor Lauri Honko (1932–2002) writes: ‘it may seem foolhardy that the youngest comparative religion society in the Northern countries should undertake to fill this gap’ – that is, to publish a Nordic journal in comparative religion. It was not only the publishing of Temenos that was initiated from Finland, but also quite a few other new things. This is why I have chosen to call my presentation ‘The Small and Daring Society’. In what follows here let us take a look at how it all started, and at the main features of development over the past 50 years – and also at what are the challenges that the current situation presents the Society with.
Glasses as sources of condensed phosphates on the early earth
Procedures for the analysis of phosphorus in geological material normally aims for the determination of the total amount of P expressed as orthophosphate [Formula: see text] or the differentiation between inorganic and organic P. This is probably due to analytical difficulties but also to the prevalent opinion that the chemistry of phosphorus in geological environments is almost entirely restricted to the mineral apatite. Because of the low solubility of apatite it is, therefore, commonly argued that little P was around for prebiotic chemistry and that pre-biological processes would essentially have had to do without this indispensable element unless it was provided by alternative sources or mechanisms (such as reduction and activation by lightning or delivery to Earth by celestial bodies). It is a paradox that the potential existence of reactive phosphorus compounds, such as the mineral schreibersite - iron phosphide, in geological material on Earth is seldom considered although we are aware of the existence of such compounds in meteorite material. The content of Al(2)O(3) in rocks appears to be important for the speciation of phosphorus and for how strongly it binds to silicates. In general, low alumina seems to promote the existence of isolated charge-balanced phosphorus complexes
- …