109 research outputs found

    Metabolic and Stress Response Changes Precede Disease Onset in the Spinal Cord of Mutant SOD1 ALS Mice

    Get PDF
    Many Amyotrophic Lateral Sclerosis (ALS) patients experience hypermetabolism, or an increase in measured vs. calculated metabolic rate. The cause of hypermetabolism and the effects on neuronal metabolism in ALS are currently unknown, but the efficacy of dietary interventions shows promise for metabolism as an ALS therapeutic target. The goal of this study is to measure changes in metabolic pathways as a function of disease progression in spinal cords of the SOD1G93A mouse model of ALS. We conducted a comprehensive assessment of protein expression for metabolic pathways, antioxidants, chaperones, and proteases in lumbar spinal cord from male SOD1G93A mice at pre-onset, onset, and end-stages of the disease using targeted proteomic analysis. These results reveal that protein content of metabolic proteins including proteins involved in glycolysis, β-oxidation, and mitochondrial metabolism is altered in SOD1G93A mouse spinal cord well before disease onset. The changes in mitochondrial metabolism proteins are associated with decreased maximal respiration and glycolytic flux in SOD1G93A dermal fibroblasts and increased hydrogen peroxide and lipid hydroperoxide production in mitochondria from sciatic nerve and gastrocnemius muscle fibers at end stage of disease. Consistent with redox dysregulation, expression of the glutathione antioxidant system is decreased, and peroxiredoxins and catalase expression are increased. In addition, stress response proteases and chaperones, including those involved in the mitochondrial unfolded protein response (UPRmt), are induced before disease onset. In summary, we report that metabolic and stress response changes occur in SOD1G93A lumbar spinal cord before motor symptom onset, and are primarily caused by SOD1G93A expression and do not vary greatly as a function of disease course

    Disparate Central and Peripheral Effects of Circulating IGF-1 Deficiency on Tissue Mitochondrial Function

    Get PDF
    © 2019, The Author(s). Age-related decline in circulating levels of insulin-like growth factor (IGF)-1 is associated with reduced cognitive function, neuronal aging, and neurodegeneration. Decreased mitochondrial function along with increased reactive oxygen species (ROS) and accumulation of damaged macromolecules are hallmarks of cellular aging. Based on numerous studies indicating pleiotropic effects of IGF-1 during aging, we compared the central and peripheral effects of circulating IGF-1 deficiency on tissue mitochondrial function using an inducible liver IGF-1 knockout (LID). Circulating levels of IGF-1 (~ 75%) were depleted in adult male Igf1f/f mice via AAV-mediated knockdown of hepatic IGF-1 at 5 months of age. Cognitive function was evaluated at 18 months using the radial arm water maze and glucose and insulin tolerance assessed. Mitochondrial function was analyzed in hippocampus, muscle, and visceral fat tissues using high-resolution respirometry O2K as well as redox status and oxidative stress in the cortex. Peripherally, IGF-1 deficiency did not significantly impact muscle mass or mitochondrial function. Aged LID mice were insulin resistant and exhibited ~ 60% less adipose tissue but increased fat mitochondrial respiration (20%). The effects on fat metabolism were attributed to increases in growth hormone. Centrally, IGF-1 deficiency impaired hippocampal-dependent spatial acquisition as well as reversal learning in male mice. Hippocampal mitochondrial OXPHOS coupling efficiency and cortex ATP levels (~ 50%) were decreased and hippocampal oxidative stress (protein carbonylation and F2-isoprostanes) was increased. These data suggest that IGF-1 is critical for regulating mitochondrial function, redox status, and spatial learning in the central nervous system but has limited impact on peripheral (liver and muscle) metabolism with age. Therefore, IGF-1 deficiency with age may increase sensitivity to damage in the brain and propensity for cognitive deficits. Targeting mitochondrial function in the brain may be an avenue for therapy of age-related impairment of cognitive function. Regulation of mitochondrial function and redox status by IGF-1 is essential to maintain brain function and coordinate hippocampal-dependent spatial learning. While a decline in IGF-1 in the periphery may be beneficial to avert cancer progression, diminished central IGF-1 signaling may mediate, in part, age-related cognitive dysfunction and cognitive pathologies potentially by decreasing mitochondrial function

    Reduced Coupling of Oxidative Phosphorylation In Vivo Precedes Electron Transport Chain Defects Due to Mild Oxidative Stress in Mice

    Get PDF
    Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ) treatment of wild type mice) and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1−/−)) models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O) at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax) was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain

    p53 Regulates Oxidative Stress-Mediated Retrograde Signaling: A Novel Mechanism for Chemotherapy-Induced Cardiac Injury

    Get PDF
    The side effects of cancer therapy on normal tissues limit the success of therapy. Generation of reactive oxygen species (ROS) has been implicated for numerous chemotherapeutic agents including doxorubicin (DOX), a potent cancer chemotherapeutic drug. The production of ROS by DOX has been linked to DNA damage, nuclear translocation of p53, and mitochondrial injury; however, the causal relationship and molecular mechanisms underlying these events are unknown. The present study used wild-type (WT) and p53 homozygous knock-out (p53−/−) mice to investigate the role of p53 in the crosstalk between mitochondria and nucleus. Injecting mice with DOX (20 mg/kg) causes oxidative stress in cardiac tissue as demonstrated by immunogold analysis of the levels of 4-hydroxy-2′-nonenal (4HNE)-adducted protein, a lipid peroxidation product bound to proteins. 4HNE levels increased in both nuclei and mitochondria of WT DOX-treated mice but only in nuclei of DOX-treated p53(−/−) mice, implicating a critical role for p53 in causing DOX-induced oxidative stress in mitochondria. The stress-activated protein c-Jun amino-terminal kinase (JNKs) was activated in response to increased 4HNE in WT mice but not p53(−/−) mice receiving DOX treatment, as determined by co-immunoprecipitation of HNE and pJNK. The activation of JNK in DOX treated WT mice was accompanied by Bcl-2 dissociation from Beclin in mitochondria and induction of type II cell death (autophagic cell death), as evidenced by an increase in LC3-I/LC-3-II ratio and γ-H2AX, a biomarker for DNA damage. The absence of p53 significantly reduces mitochondrial injury, assessed by quantitative morphology, and decline in cardiac function, assessed by left ventricular ejection fraction and fraction shortening. These results demonstrate that p53 plays a critical role in DOX-induced cardiac toxicity, in part, by the induction of oxidative stress mediated retrograde signaling

    Formation of 3-nitrotyrosines in carbonic anhydrase III is a sensitive marker of oxidative stress in skeletal muscle

    Full text link
    Oxidation of skeletal muscle proteins has been reported to occur following contractions, with ageing, and with a variety of disease states, but the nature of the oxidised proteins has not been identified. A proteomics approach was utilised to identify major proteins that contain carbonyls and/or 3-nitrotyrosine (3-NT) groups in the gastrocnemius (GTN) muscles of adult (5–11 14months of age) and old (26–28 14months of age) wild type (WT) mice and adult mice lacking copper, zinc superoxide dismutase ( Sod1 −/− mice), manganese superoxide dismutase ( Sod2 +/− mice) or glutathione peroxidase 1 ( GPx1 −/− mice). In quiescent GTN muscles of adult and old WT mice, protein carbonylation and/or formation of 3-NT occurred in several proteins involved in glycolysis, as well as creatine kinase and carbonic anhydrase III. Following contractions, the 3-NT intensity was increased in specific protein bands from GTN muscles of both adult and old WT mice. In quiescent GTN muscles from adult Sod1 −/− , Sod2 +/− or GPx1 −/− mice compared with age-matched WT mice only carbonic anhydrase III showed a greater 3-NT content. We conclude that formation of 3-NT occurs readily in response to oxidative stress in carbonic anhydrase III and this may provide a sensitive measure of oxidative damage to muscle proteins.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56035/1/362_ftp.pd

    Genetic modification of the manganese superoxide dismutase/glutathione peroxidase 1 pathway influences intracellular ROS generation in quiescent, but not contracting, skeletal muscle cells

    Get PDF
    [EN] Increased amounts of reactive oxygen species (ROS) are generated by skeletal muscle during contractile activity, but their intracellular source is unclear. The oxidation of 2′,7′-dichlorodihydrofluorescein (DCFH) was examined as an intracellular probe for reactive oxygen species in skeletal muscle myotubes derived from muscles of wild-type mice and mice that were heterozygous knockout for manganese superoxide dismutase (Sod2+/− ), homozygous knockout for glutathione peroxidase 1 (GPx1−/− ), or MnSOD transgenic overexpressors (Sod2-Tg). Myoblasts were stimulated to fuse and loaded with DCFH 5–7 days later. Intracellular DCF epifluorescence was measured and myotubes were electrically stimulated to contract for 15 min. Quiescent myotubes with decreased MnSOD or GPx1 showed a significant increase in the rate of DCFH oxidation whereas those with increased MnSOD did not differ from wild type. Following contractions, myotubes from all groups showed an equivalent increase in DCF fluorescence. Thus the oxidation of DCFH in quiescent skeletal muscle myotubes is influenced by the content of enzymes that regulate mitochondrial superoxide and hydrogen peroxide content. In contrast, the increase in DCFH oxidation following contractions was unaffected by reduced or enhanced MnSOD or absent GPx1, indicating that reactive oxygen species produced by contractions were predominantly generated by nonmitochondrial sources

    Neuron specific reduction in CuZnSOD is not sufficient to initiate a full sarcopenia phenotype

    Get PDF
    Our previous studies showed that adult (8 month) mice lacking CuZn-superoxide dismutase (CuZnSOD, Sod1KO mice) have neuromuscular changes resulting in dramatic accelerated muscle atrophy and weakness that mimics age-related sarcopenia. We have further shown that loss of CuZnSOD targeted to skeletal muscle alone results in only mild weakness and no muscle atrophy. In this study we targeted deletion of CuZnSOD specifically to neurons (nSod1KO mice) and determined the effect on muscle mass and weakness. The nSod1KO mice show a significant loss of CuZnSOD activity and protein level in brain and spinal cord but not in muscle tissue. The masses of the gastrocnemius, tibialis anterior and extensor digitorum longus (EDL) muscles were not reduced in nSod1KO compared to wild type mice, even at 20 months of age, although the quadriceps and soleus muscles showed small but significant reductions in mass in the nSod1KO mice. Maximum isometric specific force was reduced 8% to 10% in the gastrocnemius and EDL muscle of nSod1KO mice, while soleus was not affected. Muscle mitochondrial ROS generation and oxidative stress measured by levels of reactive oxygen/nitrogen species (RONS) regulatory enzymes, protein nitration and F2-isoprostane levels were not increased in muscle from the nSod1KO mice. Although we did not find evidence of denervation in the nSOD1KO mice, neuromuscular junction morphology was altered and the expression of genes associated with denervation (acetylcholine receptor subunit alpha (AChRα) and the transcription factors Runx1 and GADD45α) was increased, supporting a role for neuronal loss of CuZnSOD initiating alterations at the neuromuscular junction. These results and our previous studies support the concept that deficits in either the motor neuron or muscle alone are not sufficient to initiate a full sarcopenic phenotype and that deficits in both tissues are required to recapitulate the loss of muscle observed in Sod1KO mice

    Elevated phospholipid hydroperoxide glutathione peroxidase (GPX4) expression modulates oxylipin formation and inhibits age-related skeletal muscle atrophy and weakness

    Get PDF
    Our previous studies support a key role for mitochondrial lipid hydroperoxides as important contributors to denervation-related muscle atrophy, including muscle atrophy associated with aging. Phospholipid hydroperoxide glutathione peroxidase 4 (GPX4) is an essential antioxidant enzyme that directly reduces phospholipid hydroperoxides and we previously reported that denervation-induced muscle atrophy is blunted in a mouse model of GPX4 overexpression. Therefore, the goal of the present study was to determine whether GPX4 overexpression can reduce the age-related increase in mitochondrial hydroperoxides in skeletal muscle and ameliorate age-related muscle atrophy and weakness (sarcopenia). Male C57Bl6 WT and GPX4 transgenic (GPX4Tg) mice were studied at 3 to 5 and 23–29 months of age. Basal mitochondrial peroxide generation was reduced by 34% in muscle fibers from aged GPX4Tg compared to old WT mice. GPX4 overexpression also reduced levels of lipid peroxidation products: 4-HNE, MDA, and LOOHs by 38%, 32%, and 84% respectively in aged GPX4Tg mice compared to aged WT mice. Muscle mass was preserved in old GPX4 Tg mice by 11% and specific force generation was 21% higher in old GPX4Tg versus age matched male WT mice. Oxylipins from lipoxygenases (LOX) and cyclooxygenase (COX), as well as less abundant non-enzymatically generated isomers, were significantly reduced by GPX4 overexpression. The expression of cPLA2, 12/15-LOX and COX-2 were 1.9-, 10.5- and 3.4-fold greater in old versus young WT muscle respectively, and 12/15-LOX and COX-2 levels were reduced by 37% and 35%, respectively in muscle from old GPX4Tg mice. Our study suggests that lipid peroxidation products may play an important role in the development of sarcopenia, and their detoxification might be an effective intervention in preventing muscle atrophy
    corecore