2,692 research outputs found

    The Origin of Sequential Chromospheric Brightenings

    Full text link
    Sequential chromospheric brightenings (SCBs) are often observed in the immediate vicinity of erupting flares and are associated with coronal mass ejections. Since their initial discovery in 2005, there have been several subsequent investigations of SCBs. These studies have used differing detection and analysis techniques, making it difficult to compare results between studies. This work employs the automated detection algorithm of Kirk et al. (Solar Phys. 283, 97, 2013) to extract the physical characteristics of SCBs in 11 flares of varying size and intensity. We demonstrate that the magnetic substructure within the SCB appears to have a significantly smaller area than the corresponding H-alpha emission. We conclude that SCBs originate in the lower corona around 0.1 R_sun above the photosphere, propagate away from the flare center at speeds of 35 - 85 km/s, and have peak photosphere magnetic intensities of 148 +/- 2.9 G. In light of these measurements, we infer SCBs to be distinctive chromospheric signatures of erupting coronal mass ejections.Comment: 25 pages, 9 figures, 5 table

    Association Between APOL1 Genotypes and Risk of Cardiovascular Disease in MESA (Multi-Ethnic Study of Atherosclerosis).

    Get PDF
    BACKGROUND:APOL1 genetic variants confer an increased risk for kidney disease. Their associations with cardiovascular disease (CVD) are less certain. We aimed to compare the prevalence of subclinical CVD and incidence of atherosclerotic CVD and heart failure by APOL1 genotypes among self-identified black participants of MESA (Multi-Ethnic Study of Atherosclerosis). METHODS AND RESULTS:Cross-sectional associations of APOL1 genotypes (high-risk=2 alleles; low-risk=0 or 1 allele) with coronary artery calcification, carotid-intimal media thickness, and left ventricular mass were evaluated using logistic and linear regression. Longitudinal associations of APOL1 genotypes with incident myocardial infarction, stroke, coronary heart disease, and congestive heart failure were examined using Cox regression. We adjusted for African ancestry, age, and sex. We also evaluated whether hypertension or kidney function markers explained the observed associations. Among 1746 participants with APOL1 genotyping (mean age 62 years, 55% women, mean cystatin C-based estimated glomerular filtration rate 89 mL/min per 1.73 m2, 12% with albuminuria), 12% had the high-risk genotypes. We found no difference in prevalence or severity of coronary artery calcification, carotid-intimal media thickness, or left ventricular mass by APOL1 genotypes. The APOL1 high-risk group was 82% more likely to develop incident heart failure compared with the low-risk group (95% confidence interval, 1.01-3.28). Adjusting for hypertension (hazard ratio, 1.80; 95% confidence interval, 1.00-3.24) but not markers of kidney function (hazard ratio, 1.86; 95% confidence interval, 1.03-3.35) slightly attenuated this association. The APOL1 high-risk genotypes were not significantly associated with other clinical CVD outcomes. CONCLUSIONS:Among blacks without baseline CVD, the APOL1 high-risk variants may be associated with increased risk for incident heart failure but not subclinical CVD or incident clinical atherosclerotic CVD

    Nonperturbative calculation of Born-Infeld effects on the Schroedinger spectrum of the hydrogen atom

    Full text link
    We present the first nonperturbative numerical calculations of the nonrelativistic hydrogen spectrum as predicted by first-quantized electrodynamics with nonlinear Maxwell-Born-Infeld field equations. We also show rigorous upper and lower bounds on the ground state. When judged against empirical data our results significantly restrict the range of viable values of the new electromagnetic constant which is introduced by the Born-Infeld theory. We assess Born's own proposal for the value of his constant.Comment: 4p., 2 figs, 1 table; submitted for publicatio

    Translational Vestibulo-Ocular Reflex and Motion Perception During Interaural Linear Acceleration: Comparison of Different Motion Paradigms

    Get PDF
    The neural mechanisms to resolve ambiguous tilt-translation motion have been hypothesized to be different for motion perception and eye movements. Previous studies have demonstrated differences in ocular and perceptual responses using a variety of motion paradigms, including Off-Vertical Axis Rotation (OVAR), Variable Radius Centrifugation (VRC), translation along a linear track, and tilt about an Earth-horizontal axis. While the linear acceleration across these motion paradigms is presumably equivalent, there are important differences in semicircular canal cues. The purpose of this study was to compare translation motion perception and horizontal slow phase velocity to quantify consistencies, or lack thereof, across four different motion paradigms. Twelve healthy subjects were exposed to sinusoidal interaural linear acceleration between 0.01 and 0.6 Hz at 1.7 m/s/s (equivalent to 10 tilt) using OVAR, VRC, roll tilt, and lateral translation. During each trial, subjects verbally reported the amount of perceived peak-to-peak lateral translation and indicated the direction of motion with a joystick. Binocular eye movements were recorded using video-oculography. In general, the gain of translation perception (ratio of reported linear displacement to equivalent linear stimulus displacement) increased with stimulus frequency, while the phase did not significantly vary. However, translation perception was more pronounced during both VRC and lateral translation involving actual translation, whereas perceptions were less consistent and more variable during OVAR and roll tilt which did not involve actual translation. For each motion paradigm, horizontal eye movements were negligible at low frequencies and showed phase lead relative to the linear stimulus. At higher frequencies, the gain of the eye movements increased and became more inphase with the acceleration stimulus. While these results are consistent with the hypothesis that the neural computational strategies for motion perception and eye movements differ, they also indicate that the specific motion platform employed can have a significant effect on both the amplitude and phase of each
    • …
    corecore