445 research outputs found

    Ultrasound Capsule Endoscopy With a Mechanically Scanning Micro-ultrasound:A Porcine Study

    Get PDF
    Wireless capsule endoscopy has been used for the clinical examination of the gastrointestinal (GI) tract for two decades. However, most commercially available devices only utilise optical imaging to examine the GI wall surface. Using this sensing modality, pathology within the GI wall cannot be detected. Micro-ultrasound (μUS) using high-frequency (>20 MHz) ultrasound can provide a means of transmural or cross-sectional image of the GI tract. Depth of imaging is approximately 10 mm with a resolution of between 40–120 μm that is sufficient to differentiate between subsurface histologic layers of the various regions of the GI tract. Ultrasound capsule endoscopy (USCE) uses a capsule equipped with μUS transducers that are capable of imaging below the GI wall surface, offering thereby a complementary sensing technique to optical imaging capsule endoscopy. In this work, a USCE device integrated with a ∼30 MHz ultrasonic transducer was developed to capture a full 360° image of the lumen. The performance of the device was initially evaluated using a wire phantom, indicating an axial resolution of 69.0 μm and lateral resolution of 262.5 μm. Later, in vivo imaging performance was characterised in the oesophagus and small intestine of anaesthetized pigs. The reconstructed images demonstrate clear layer differentiation of the lumen wall. The tissue thicknesses measured from the B-scan images show good agreement with ex vivo images from the literature. The high-resolution ultrasound images in the in vivo porcine model achieved with this device is an encouraging preliminary step in the translation of these devices toward future clinical use

    Optimization of biotinyl-tyramide-based in situ hybridization for sensitive background-free applications on formalin-fixed, paraffin-embedded tissue specimens

    Get PDF
    BACKGROUND: Over the past five years in situ hybridization techniques employing tyramide amplification reagents have been developed and promise the potential detection of low/single-copy nucleic acid sequences. However the increased sensitivity that tyramide amplification brings about may also lead to problems of background staining that confound data interpretation. METHODS: In this study those factors enabling background-free biotinyl-tyramide based in situ hybridization assay of formalin-fixed paraffin-embedded tissues have been examined. SiHa, HeLa and CaSki cell lines known to contain HPV integrated into the cell genome, and archival cervical pre-invasive lesions and carcinomas have been successfully assessed using biotinylated HPV and centromeric probes. RESULTS: The single most important factor both for sensitivity and clean background was a tissue unmasking regimen that included treatment with 10 mM sodium citrate pH 6.0 at 95°C followed by digestion with pepsin/0.2 M HCl. Concentrations both of probe and primary streptavidin-peroxidase conjugate and pH of hybridization mix and stringency washes were also critical for sensitivity. Certain probes were more associated with background staining than others. This problem was not related to probe purity or size. In these instances composition of hybridization mix solution was especially critical to avoid background. 3-amino-9-ethylcarbazole was preferred over 3,3'-diaminobenzidene as a chromogen because background was cleaner and the 1–2 copies of HPV16 integrated in SiHa cells were readily demonstrable. HPV detection on metaphase spreads prepared from SiHa cells was only successful when a fluorescent detection method was combined with tyramide reagent. 'Punctate' and 'diffuse' signal patterns were identified amongst tissues consistent with the former representing integration and 'diffuse' representing episomal HPV. Only punctate signals were detected amongst the cell lines and were common amongst high-grade pre-invasive lesions and carcinomas. However it remains to be determined why single/low-copy episomal HPV in basal/parabasal cells of low-grade lesions is not also detectable using tyramide-based techniques and whether every punctate signal represents integration. CONCLUSIONS: A tyramide-based in situ hybridization methodology has been established that enables sensitive, background-free assay of clinical specimens. As punctate signals characterize HPV in high-grade cervical lesions the method may have potential for clinical applications

    The First International Mini-Symposium on Methionine Restriction and Lifespan

    Get PDF
    It has been 20 years since the Orentreich Foundation for the Advancement of Science, under the leadership Dr. Norman Orentreich, first reported that low methionine (Met) ingestion by rats extends lifespan (Orentreich et al., 1993). Since then, several studies have replicated the effects of dietary methionine restricted (MR) in delaying age-related diseases (Richie et al., 1994; Miller et al., 2005; Ables et al., 2012; Sanchez-Roman and Barja, 2013). We report the abstracts from the First International Mini-Symposium on Methionine Restriction and Lifespan held in Tarrytown, NY, September 2013. The goals were (1) to gather researchers with an interest in MR and lifespan, (2) to exchange knowledge, (3) to generate ideas for future investigations, and (4) to strengthen relationships within this community. The presentations highlighted the importance of research on cysteine, growth hormone (GH), and ATF4 in the paradigm of aging. In addition, the effects of dietary restriction or MR in the kidneys, liver, bones, and the adipose tissue were discussed. The symposium also emphasized the value of other species, e.g., the naked mole rat, Brandt's bat, and Drosophila, in aging research. Overall, the symposium consolidated scientists with similar research interests and provided opportunities to conduct future collaborative studies (Figure 3)

    Gene Expression Signatures That Predict Radiation Exposure in Mice and Humans

    Get PDF
    BACKGROUND: The capacity to assess environmental inputs to biological phenotypes is limited by methods that can accurately and quantitatively measure these contributions. One such example can be seen in the context of exposure to ionizing radiation. METHODS AND FINDINGS: We have made use of gene expression analysis of peripheral blood (PB) mononuclear cells to develop expression profiles that accurately reflect prior radiation exposure. We demonstrate that expression profiles can be developed that not only predict radiation exposure in mice but also distinguish the level of radiation exposure, ranging from 50 cGy to 1,000 cGy. Likewise, a molecular signature of radiation response developed solely from irradiated human patient samples can predict and distinguish irradiated human PB samples from nonirradiated samples with an accuracy of 90%, sensitivity of 85%, and specificity of 94%. We further demonstrate that a radiation profile developed in the mouse can correctly distinguish PB samples from irradiated and nonirradiated human patients with an accuracy of 77%, sensitivity of 82%, and specificity of 75%. Taken together, these data demonstrate that molecular profiles can be generated that are highly predictive of different levels of radiation exposure in mice and humans. CONCLUSIONS: We suggest that this approach, with additional refinement, could provide a method to assess the effects of various environmental inputs into biological phenotypes as well as providing a more practical application of a rapid molecular screening test for the diagnosis of radiation exposure

    Risk of COVID-19 after natural infection or vaccination

    Get PDF
    BACKGROUND: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. METHODS: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 \u3e7-15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. FINDINGS: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05-0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01-0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. INTERPRETATION: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. FUNDING: National Institutes of Health
    corecore