60 research outputs found

    Neutrophil extracellular traps in chronic lung disease:implications for pathogenesis and therapy

    Get PDF
    Neutrophilic inflammation has a key role in the pathophysiology of multiple chronic lung diseases. The formation of neutrophil extracellular traps (NETs) has emerged as a key mechanism of disease in neutrophilic lung diseases including asthma, COPD, cystic fibrosis and, most recently, bronchiectasis. NETs are large, web-like structures composed of DNA and anti-microbial proteins that are able to bind pathogens, prevent microbial dissemination and degrade bacterial virulence factors. The release of excess concentrations of proteases, antimicrobial proteins, DNA and histones, however, also leads to tissue damage, impaired mucociliary clearance, impaired bacterial killing and increased inflammation. A number of studies have linked airway NET formation with greater disease severity, increased exacerbations and overall worse disease outcomes across the spectrum of airway diseases. Treating neutrophilic inflammation has been challenging in chronic lung disease because of the delicate balance between reducing inflammation and increasing the risk of infections through immunosuppression. Novel approaches to suppressing NET formation or the associated inflammation are in development and represent an important therapeutic target. This review will discuss the relationship between NETs and the pathophysiology of cystic fibrosis, asthma, COPD and bronchiectasis, and explore the current and future development of NET-targeting therapies

    Inhaled corticosteroids and the lung microbiome in copd

    Get PDF
    The Global Initiative for Chronic Obstructive Lung Disease 2021 Report recommends inhaled corticosteroid (ICS)-containing regimens as part of pharmacological treatment in patients with chronic obstructive lung disease (COPD) and frequent exacerbations, particularly with eosinophilic inflammation. However, real-world studies reveal overprescription of ICS in COPD, irrespective of disease presentation and inflammatory endotype, leading to increased risk of side effects, mainly respiratory infections. The optimal use of ICS in COPD therefore remains an area of intensive research, and additional biomarkers of benefit and risk are needed. Although the interplay between inflammation and infection in COPD is widely acknowledged, the role of the microbiome in shaping lower airway inflammation has only recently been explored. Next-generation sequencing has revealed that COPD disease progression and exacerbation frequency are associated with changes in the composition of the lung microbiome, and that the immunosuppressive effects of ICS can contribute to potentially deleterious airway microbiota changes by increasing bacterial load and the abundance of potentially pathogenic taxa such as Streptococcus and Haemophilus. Here, we explore the relationship between microbiome, inflammation, ICS use and disease phenotype. This relationship may inform the benefit:risk assessment of ICS use in patients with COPD and lead to more personalised pharmacological management

    Highlights of the ERS Lung Science Conference 2022

    Get PDF
    This article presents the highlights of the ERS Lung Science Conference 2022, including a session organised by the Early Career Member Committee (ECMC) dedicated to career development https://bit.ly/3tarCXc Every year, the European Respiratory Society (ERS) organises the Lung Science Conference (LSC), in Estoril, to discuss basic and translational science. The topic of the 20th LSC was “Mucosal immunology of the lung: balancing protective immunity and chronic inflammation”. This was the first time that the LSC was organised as a hybrid congress with both in person and online attendance. In addition to an outstanding scientific programme, the LSC provides excellent opportunities for career development and inclusion of early career members (ECMs). All scientific and poster sessions are chaired by an ECM who is paired with a senior faculty to allow ECMs to become acquainted with session chairing, and there is a session organised by the Early Career Member Committee (ECMC) dedicated to career development. Moreover, travel bursaries are made available to abstract authors, and all bursary recipients and first-time attendees are invited to take part in a mentorship lunch. In this article, we provide the names of the ECM awardees and describe the scientific highlights of the LSC 2022 for those who could not attend.info:eu-repo/semantics/publishedVersio

    Antimicrobial peptides, disease severity and exacerbations in bronchiectasis

    Get PDF
    Rationale: Recently a frequent exacerbator phenotype has been described in bronchiectasis, but the underlying biological mechanisms are unknown. Antimicrobial peptides (AMPs) are important in host defence against microbes but can be proinflammatory in chronic lung disease. Objectives: To determine pulmonary and systemic levels of AMP and their relationship with disease severity and future risk of exacerbations in bronchiectasis. Methods: A total of 135 adults with bronchiectasis were prospectively enrolled at three European centres. Levels of cathelicidin LL-37, lactoferrin, lysozyme and secretory leucocyte protease inhibitor (SLPI) in serum and sputum were determined at baseline by ELISA. Patients were followed up for 12 months. We examined the ability of sputum AMP to predict future exacerbation risk. Measurements and main results: AMP levels were higher in sputum than in serum, suggesting local AMP release. Patients with more severe disease at baseline had dysregulation of airway AMP. Higher LL-37 and lower SLPI levels were associated with Bronchiectasis Severity Index, lower FEV1 (forced expiratory volume in 1 s) and Pseudomonas aeruginosa infection. Low SLPI levels were also associated with the exacerbation frequency at baseline. During follow-up, higher LL-37 and lower SLPI levels were associated with a shorter time to the next exacerbation, whereas LL-37 alone predicted exacerbation frequency over the next 12 months. Conclusions: Patients with bronchiectasis showed dysregulated sputum AMP levels, characterised by elevated LL-37 and reduced SLPI levels in the frequent exacerbator phenotype. Elevated LL-37 and reduced SLPI levels are associated with Pseudomonas aeruginosa infection and can predict future risk of exacerbations in bronchiectasis

    Personalised anti-inflammatory therapy for bronchiectasis and cystic fibrosis:selecting patients for controlled trials of neutrophil elastase inhibition

    Get PDF
    Background Neutrophil elastase (NE) has been linked to lung neutrophil dysfunction in bronchiectasis and cystic fibrosis (CF), making NE inhibition a potential therapeutic target. NE inhibitor trials have given mixed result perhaps because not all patients have elevated airway NE activity. Methods We tested whether a single baseline sputum NE measurement or a combination of clinical parameters could enrich patient populations with elevated NE activity for “personalised medicine”. Intra- and interindividual variations of total and active NE levels in induced sputum from patients with CF or bronchiectasis were monitored over 14 days. Patients with established CF and bronchiectasis (n=5 per group) were recruited. NE was measured using three different methods: one total and two active NE assays. Subsequently, we analysed the association between clinical parameters and NE from a large bronchiectasis cohort study (n=381). Results All three assays showed a high degree of day-to-day variability (0–233% over 14 days). There were strong correlations found between all assays (p<0.0001). Despite high day-to-day variability, patients could be stratified into “high” or “low” groups based on moderate cut-off levels. In the bronchiectasis cohort study, factors most associated with high sputum NE levels were: Pseudomonas aeruginosa infection (β-estimate 11.5, 95% CI −6.0–29.0), sputum colour (β-estimate 10.4, 95% CI 4.3–16.6), Medical Research Council dyspnoea score (β-estimate 6.4, 95% CI 1.4–11.4) and exacerbation history (β-estimate 3.4, 95% CI 1.4–5.3). Collectively, P. aeruginosa infection, sputum colour and exacerbation frequency provided the greatest specificity for “high” NE (98.7%, 95% CI 7.0–99.6%). Conclusion These results show that patients with bronchiectasis and CF can be effectively divided into “high” or “low” groups, based on sputum NE assays or clinical inclusion criteria
    corecore