1,410 research outputs found
Synchrotron radiation from a runaway electron distribution in tokamaks
The synchrotron radiation emitted by runaway electrons in a fusion plasma
provides information regarding the particle momenta and pitch-angles of the
runaway electron population through the strong dependence of the synchrotron
spectrum on these parameters. Information about the runaway density and its
spatial distribution, as well as the time evolution of the above quantities,
can also be deduced. In this paper we present the synchrotron radiation spectra
for typical avalanching runaway electron distributions. Spectra obtained for a
distribution of electrons are compared to the emission of mono-energetic
electrons with a prescribed pitch-angle. We also examine the effects of
magnetic field curvature and analyse the sensitivity of the resulting spectrum
to perturbations to the runaway distribution. The implications for the deduced
runaway electron parameters are discussed. We compare our calculations to
experimental data from DIII-D and estimate the maximum observed runaway energy.Comment: 22 pages, 12 figures; updated author affiliations, fixed typos, added
a sentence at the end of section I
Static spherically symmetric monopole solutions in the presence of a dilaton field
A numerical study of static spherically symmetric monople solutions of a
spontaneously broken SU(2) gauge theory coupled to a dilaton field is
presented. Regular solutions seem to exist only up to a maximal value of the
dilaton coupling. In addition to the generalization of the 't Hooft-Polyakov
monopole a discrete family of regular solutions is found, corresponding to
radial excitations, absent in the theory without dilaton.Comment: 9 pages (incl. 14 figures in eps format) Latex. Figures are to be
decompressed from figs.uu included here as an uuencoded file. Cause of
resubmission:problem with the previously uuencoded fil
Evidence for a temperature-induced spin-state transition of Co3+ in La2-xSrxCoO4
We study the magnetic susceptibility of mixed-valent La2-xSrxCoO4 single
crystals in the doping range of 0.5<= x <= 0.8 for temperatures up to 1000 K.
The magnetism below room temperature is described by paramagnetic Co2+ in the
high-spin state and by Co3+ in the non-magnetic low-spin state. Above room
temperature, an increase in susceptibility compared to the behavior expected
from Co2+ is seen, which we attribute to a spin-state transition of Co3+. The
susceptibility is analyzed by comparison to full-multiplet calculations for the
thermal population of the high- and intermediate-spin states of Co3+
On the Stability of Gravitating Nonabelian Monopoles
The behaviour of magnetic monopole solutions of the Einstein-Yang-Mills-Higgs
equations subject to linear spherically symmetric perturbations is studied.
Using Jacobi's criterion some of the monopoles are shown to be unstable.
Furthermore the numerical results and analytical considerations indicate the
existence of a set of stable solutions.Comment: 9 pages, 7 figures, minor change
Electronic and magnetic properties of the kagome systems YBaCo4O7 and YBaCo3MO7 (M=Al, Fe)
We present a combined experimental and theoretical x-ray absorption
spectroscopy (XAS) study of the new class of cobaltates YBaCo4O7 and YBaCo3MO7
(M= Al, Fe). The focus is on the local electronic and magnetic properties of
the transition metal ions in these geometrically frustrated kagome compounds.
For the mixed valence cobaltate YBaCo4O7, both the Co2+ and Co3+ are found to
be in the high spin state. The stability of these high spin states in
tetrahedral coordination is compared with those in the more studied case of
octahedral coordination. For the new compound YBaCo3FeO7, we find exclusively
Co2+ and Fe3+ as charge states
High-density speckle contrast optical tomography of cerebral blood flow response to functional stimuli in the rodent brain
Noninvasive, three-dimensional, and longitudinal imaging of cerebral blood flow (CBF) in small animal models and ultimately in humans has implications for fundamental research and clinical applications. It enables the study of phenomena such as brain development and learning and the effects of pathologies, with a clear vision for translation to humans. Speckle contrast optical tomography (SCOT) is an emerging optical method that aims to achieve this goal by directly measuring three-dimensional blood flow maps in deep tissue with a relatively inexpensive and simple system. High-density SCOT is developed to follow CBF changes in response to somatosensory cortex stimulation. Measurements are carried out through the intact skull on the rat brain. SCOT is able to follow individual trials in each brain hemisphere, where signal averaging resulted in comparable, cortical images to those of functional magnetic resonance images in spatial extent, location, and depth. Sham stimuli are utilized to demonstrate that the observed response is indeed due to local changes in the brain induced by forepaw stimulation. In developing and demonstrating the method, algorithms and analysis methods are developed. The results pave the way for longitudinal, nondestructive imaging in preclinical rodent models that can readily be translated to the human brain
Correlation effects in CaCu3Ru4O12
We have investigated the electronic structure of CaCu3Ru4O12 and LaCu3Ru4O12
using soft x-ray photoelectron and absorption spectroscopy together with band
structure and cluster configuration interaction calculations. We found the Cu
to be in a robust divalent ionic state while the Ru is more itinerant in
character and stabilizes the metallic state. Substitution of Ca by La
predominantly affects the Ru states. We observed strong correlation effects in
the Cu 3d states affecting the valence band line shape considerably. Using
resonant photoelectron spectroscopy at the Cu L3 edge we were able to unveil
the position of the Zhang-Rice singlet states in the one-electron removal
spectrum of the Cu with respect to the Ru-derived metallic bands in the
vicinity of the chemical potential
Gravitational Properties of Monopole Spacetimes Near the Black Hole Threshold
Although nonsingular spacetimes and those containing black holes are
qualitatively quite different, there are continuous families of configurations
that connect the two. In this paper we use self-gravitating monopole solutions
as tools for investigating the transition between these two types of
spacetimes. We show how causally distinct regions emerge as the black hole
limit is achieved, even though the measurements made by an external observer
vary continuously. We find that near-critical solutions have a naturally
defined entropy, despite the absence of a true horizon, and that this has a
clear connection with the Hawking-Bekenstein entropy. We find that certain
classes of near-critical solutions display naked black hole behavior, although
they are not truly black holes at all. Finally, we present a numerical
simulation illustrating how an incident pulse of matter can induce the
dynamical collapse of a monopole into an extremal black hole. We discuss the
implications of this process for the third law of black hole thermodynamics.Comment: 23 pages, 4 figures RevTe
Spin blockade, orbital occupation and charge ordering in La_(1.5)Sr_(0.5)CoO4
Using Co-L_(2,3) and O-K x-ray absorption spectroscopy, we reveal that the
charge ordering in La_(1.5)Sr_(0.5)CoO4 involves high spin (S=3/2) Co^2+ and
low spin (S=0) Co^3+ ions. This provides evidence for the spin blockade
phenomenon as a source for the extremely insulating nature of the
La_(2-x)Sr_(x)CoO4 series. The associated e_g^2 and e_g^0 orbital occupation
accounts for the large contrast in the Co-O bond lengths, and in turn, the high
charge ordering temperature. Yet, the low magnetic ordering temperature is
naturally explained by the presence of the non-magnetic (S=0) Co^3+ ions. From
the identification of the bands we infer that La_(1.5)Sr_(0.5)CoO4 is a narrow
band material.Comment: 5 pages, 3 figure
- …